Homework 7: Computation Graphs, Backpropagation, and
Neural Networks

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. BTEX, LyX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your BTEX document. If you are using IyX, then the listings package tends to work better.

1 Introduction

There is no doubt that neural networks are a very important class of machine learning models.
Given the sheer number of people who are achieving impressive results with neural networks, one
might think that it’s relatively easy to get them working. This is a partly an illusion. One reason
so many people have success is that, thanks to GitHub, they can copy the exact settings that others
have used to achieve success. In fact, in most cases they can start with “pre-trained” models that
already work for a similar problem, and “fine-tune” them for their own purposes. It’s far easier to
tweak and improve a working system than to get one working from scratch. If you create a new
model, you’re kind of on your own to figure out how to get it working: there’s not much theory to
guide you and the rules of thumb do not always work. Understanding even the most basic questions,
such as the preferred variant of SGD to use for optimization, is still a very active area of research.

One thing is clear, however: If you do need to start from scratch, or debug a neural network
model that doesn’t seem to be learning, it can be immensely helpful to understand the low-level
details of how your neural network works — specifically, back-propagation. With this assignment,
you’ll have the opportunity to linger on these low-level implementation details. Every major neural
network type (RNNs, CNNs, Resnets, etc.) can be implemented using the basic framework we’ll
develop in this assignment.

To help things along, we' have designed a minimalist framework for computation graphs and
put together some support code. The intent is for you to read, or at least skim, every line of code
provided, so that you’ll know you understand all the crucial components and could, in theory, create
your own from scratch. In fact, creating your own computation graph framework from scratch is
highly encouraged — you’ll learn a lot.

IPhilipp Meerkamp, Pierre Garapon, and David Rosenberg

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

2 Computation Graph Framework

To get started, please read the tutorial on the computation graph framework we’ll be working with.
(Note that it renders better if you view it locally.) The use of computation graphs is not specific to
machine learning or neural networks. Computation graphs are just a way to represent a function
that facilitates efficient computation of the function’s values and its gradients with respect to inputs.
The tutorial takes this perspective, and there is very little in it about machine learning, per se.

To see how the framework can be used for machine learning tasks, we’ve provided a full imple-
mentation of linear regression. You should start by working your way through the __init___ of
the LinearRegression class in linear_regression.py. From there, you'll want to review
the node class definitions in nodes.py, and finally the class ComputationGraphFunction in
graph.py. ComputationGraphFunction is where we repackage a raw computation graph into
something that’s more friendly to work with for machine learning. The rest of 1inear_regression.py
is fairly routine, but it illustrates how to interact with the ComputationGraphFunction.

As we'’ve noted earlier in the course, getting gradient calculations correct can be difficult. To
help things along, we’ve provided two functions that can be used to test the backward method of a
node and the overall gradient calculation of a ComputationGraphFunction. The functions are in
test_utils.py, and it’s recommended that you review the tests provided for the linear regression
implementation in linear_regression.t.py. (You can run these tests from the command
line with python3 linear_regression.t.py.) The functions actually doing the testing,
test_node_backward and test_ComputationGraphFunction, may seem a bit intricate,
but they’re implementging the exact same gradient_checker logic we saw in the first homework
assignment.

Once you've understood how linear regression works in our framework, you’re ready to start
implementing your own algorithms...

3 Ridge Regression

When moving to a new system, it’s always good to start with something familiar. But that’s not
the only reason we’re doing ridge regression in this homework. As we discussed in class, in ridge
regression the parameter vector is “shared”, in the sense that it’s used twice in the objective function.
In the computation graph, this can be seen in the fact that the node for the parameter vector has
two outgoing edges. While we don’t have this sharing in the multilayer perceptron, we do have it in
RNNs and CNNs, which are two of the most important neural network architectures in use today.
In the context of RNNs and CNNs, this parameter sharing is also referred to as parameter tying.
So being able to handle the shared parameters in ridge regression is an important prerequisite to
handling more sophisticated models.
We’ve provided some skeleton code in ridge_regression.py and some test code in ridge_regression.t.py,

which you should eventually be able to pass.

1. Complete the class L2NormPenaltyNode in nodes.py.
2. Complete the class SumNode in nodes.py.

3. Implement ridge regression with w regularized and b unregularized. Do this by completing
the __init___ method in ridge_regression.py, using the classes created above. When
complete, you should be able to pass the tests in ridge_regression.t.py. Report the

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Notebooks/computation-graph/computation-graph-framework.ipynb

average square error on the training set for the parameter settings given in the main ()
function.

4. [Optional] Create a new implementation of ridge regression that supports efficient minibatch-
ing. You will replace the ValueNode x, which contains a vector, with a ValueNode X,
which contains a matrix. The convention is that the first dimension indexes examples and the
second indexes features, as we have done throughout the course. Many of the nodes will have
to be adapted to this use case. Demonstrate the use of minibatching for your ridge regression
network, and note the amount of speedup you get.

4 Multilayer Perceptron

In this problem, we’ll be implement a multilayer perceptron (MLP) with a single hidden layer and
a square loss. We’ll implement the computation graph illustrated below:

Multilayer Perceptron, 1 hidden layer, square loss

@araw\e&é(S

?(CAI.J"O/\

Po‘tm O]D‘]e C;hvc\/o\u&

The crucial new piece here is the nonlinear hidden layer, which is what makes the multilayer
perceptron a significantly larger hypothesis space than linear prediction functions.

4.1 The standard non-linear layer

The multilayer perceptron consists of a sequence of “layers” implementing the following non-linear
function

hz)=0c(Wzx+b),

where 2 € R, W € R™*? and b € R™, and where m is often referred to as the number of
hidden units or hidden nodes. ¢ is some non-linear function, typically tanh or ReLU, applied

element-wise to the argument of o. Referring to the computation graph illustration above, we will
implement this nonlinear layer with two nodes, one implementing the affine transform L = Wiz +bq,
and the other implementing the nonlinear function h = tanh(L). In this problem, we’ll work out
how to implement the backward method for each of these nodes.

4.1.1 The Affine Transformation

In a general neural network, there may be quite a lot of computation between any given affine
transformation Wz + b and the final objective function value J. We will capture all of that in a
function f : R™ — R, for which J = f(Wax +b). Our goal is to find the partial derivative of
J with respect to each element of W, namely 0J/0W;;, as well as the partials 0J/9b;, for each
element of b. For convenience, let y = Wx + b, so we can write J = f(y). Suppose we have already

computed the partial derivatives of J with respect to the entries of y = (y1, ... ,ym)T, namely 5 8‘]
for i =1,...,m. Then by the chain rule, we have
i": aJ 0Oy,
= Oyr oWsj-
1. Show that #"U = g; xj, where © = (x1,...,24)". [Hint: Although not necessary, you

1

0 else] So, for examples, 8,, (Y1, 2?) =

might find it helpful to use the notation ¢;; = {

295151] = 2(Ej.]

2. Now let’s vectorize this. Let S erte 6 R™*! for the column Vector whose ¢th entry is a‘]

Let’s also define the matrlx i € Rmx‘i whose 7j’th entry is a . Generally speaking, we ll
always take ﬁ to be an array of the same size (¢ shape in numpy) as A. Give a vectorized

expression for g—v‘{/ in terms of the column Vectors and 2. [Hint: Outer product.]

3. In the usual way, deﬁne gL 6 R4, whose i’th entry is T Show that

dJ (0]
e (ay)

[Note, if x is just data, technically we won’t need this derivative. However, in a multilayer
perceptron, z may actually be the output of a previous hidden layer, in which case we will
need to propagate the derivative through z as well.|

4. Show that g—i = g; Where is defined in the usual way.

4.1.2 Element-wise Transformers

Our nonlinear activation function nodes take an array (e.g. a vector, matrix, higher-order tensor,
etc), and apply the same nonlinear transformation o : R — R to every element of the array. Let’s
abuse notation a bit, as is usually done in this context, and write o(A) for the array that results
from applying o(-) to each element of A. If o is differentiable at z € R, then we’ll write o’(z) for
the derivative of o at x, with ¢’(A) defined analogously to o(A).

Suppose the objective function value J is written as J = f(o(A)), for some function f : S — R,
where S is an array of the same dimensions as 0(A) and A. As before, we want to find the array

% for any A. Suppose for some A we have already computed the array g—g = 8](;(5) for S =o(A).

At this point, we’ll want to use the chain rule to figure out %{x' However, because we’re dealing
with arrays of arbitrary shapes, it can be tricky to write down the chain rule. Appropriately, we’ll
use a tricky convention: We’ll assume all entries of an array A are indexed by a single variable. So,

for example, to sum over all entries of an array A, we’ll just write), A;.

1. Show that g—i = g—g ©® o'(A), where we're using @ to represent the Hadamard product.
If A and B are arrays of the same shape, then their Hadamard product A ® B is an array
with the same shape as A and B, and for which (A ® B), = A;B;. That is, it’s just the array
formed by multiplying corresponding elements of A and B. Conveniently, in numpy if A and
B are arrays of the same shape, then A«B is their Hadamard product.

4.2 MLP Implementation

1. Complete the class AffineNode in nodes.py. Be sure to propagate the gradient with
respect to x as well, since when we stack these layers, x will itself be the output of another
node that depends on our optimization parameters.

2. Complete the class TanhNode in nodes.py. As you'll recall, %tanh(m) = 1 — tanh® 2.
Note that in the forward pass, we’ll already have computed tanh of the input and stored it in
self.out. So make sure to use self.out and not recalculate it in the backward pass.

3. Implement an MLP by completing the skeleton code in mlp_regression.py and making
use of the nodes above. Your code should pass the tests provided inmlp_regression.t.py.
Note that to break the symmetry of the problem, we initialize our weights to small random
values, rather than all zeros, as we often do for convex optimization problems. Run the MLP
for the two settings given in the main () function and report the average training error.
Note that with an MLP, we can take the original scalar as input, in the hopes that it will
learn nonlinear features on its own, using the hidden layers. In practice, it is quite challenging
to get such a neural network to fit as well as one where we provide features.

4. [Optional] See if you can get a fit on the training set with an MLP that uses just the scalar
input that is about as good as the fit using the featurized inputs. You can do that by tweaking
model parameters (e.g. the number of hidden nodes or layers) and/or the parameters of
optimization. You may use any neural network framework (PyTorch, TensorFlow, etc),
which can help by providing more advanced optimization techniques (e.g. Adam), variable
initialization methods, and/or various normalization approaches (batch norm, etc).

4.3 [OPTIONAL]
1. [Optional] Implement a Softmax node.
2. [Optional] Implement a negative log-likelihood loss node for multiclass classification.

3. [Optional] Use the classes above to apply an MLP to the simple multiclass classification
dataset we had on a previous assignment.

