Machine Learning — Brett Bernstein

Recitation 1: Gradients and Directional Derivatives

Intro Question

1. We are given the data set (z1,v1),..., (7, yn) Where z; € R? and y; € R. We want
to fit a linear function to this data by performing empirical risk minimization. More
precisely, we are using the hypothesis space F = {f(z) = wlz | w € R?} and the loss
function £(a,y) = (a — y)?. Given an initial guess w for the empirical risk minimizing
parameter vector, how could we improve our guess?
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Figure 1: Data Set With d =1

Multivariable Differentiation

Differential calculus allows us to convert non-linear problems into local linear problems, to
which we can apply the well-developed techniques of linear algebra. Here we will review
some of the important concepts needed in the rest of the course.



Single Variable Differentiation

To gain intuition, we first recall the single variable case. Let f : R — R be differentiable.

The derivative

gives us a local linear approximation of f near x. This is seen more clearly in the following
form:

fx+h)= f(x)+hf'(x)+o(h) ash—0,

where o(h) represents a function g(h) with g(h)/h — 0 as h — 0. This can be used to show
that if = is a local extremum of f then f’(z) = 0. Points with f/'(x) = 0 are called critical
points.
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Figure 2: 1D Linear Approximation By Derivative

Multivariate Differentiation

More generally, we will look at functions f : R® — R. In the single-variable case, the
derivative was just a number that signified how much the function increased when we moved
in the positive z-direction. In the multivariable case, we have many possible directions we
can move along from a given point x = (z1,...,x,) € R



Figure 3: Multiple Possible Directions for f:R? — R

If we fix a direction u we can compute the directional derivative f'(x;u) as

ooy Jl@ 4 hu) = f(z)
f(w;u) = lim - .

This allows us to turn our multidimensional problem into a 1-dimensional computation. For
instance,

P+ hu) = F(@) + hf (@) + o(h),
mimicking our earlier 1-d formula. This says that nearby x we can get a good approximation
of f(x+hu) using the linear approximation f(x)+hf'(x;u). In particular, if f/'(z;u) < 0 (such
a u is called a descent direction) then for sufficiently small h > 0 we have f(z + hu) < f(x).
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Figure 4: Directional Derivative as a Slope of a Slice
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Let ¢; = (0,0,...,0,1,0,...,0) be the ith standard basis vector. The directional deriva-

tive in the direction e; is called the ith partial derivative and can be written in several
ways:

0
5 () = 0 (2) = Ouf (@) = f'(w3 ).

We say that f is differentiable at z if
lim fl@+v)— f(z) —g"v

o0 [v]]2

:O,

for some g € R™ (note that the limit for v is taken in R™). This g is uniquely determined,
and is called the gradient of f at x denoted by V f(x). It is easy to show that the gradient
is the vector of partial derivatives:

Oz, f(x)
Viz) = :
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The kth entry of the gradient (i.e., the kth partial derivative) is the approximate change in
f due to a small positive change in x;. Sometimes we will split the variables of f into two
parts. For instance, we could write f(x,w) with x € R? and w € RY. It is often useful to
take the gradient with respect to some of the variables. Here we would write V, or V,, to
specify which part:

Ou, f (2, W) Ou, f (2, w)
V.f(z,w) = : and V,f(z,w):= :
Oy, [z, w) O, f (2, )

Analogous to the univariate case, can express the condition for differentiability in terms
of a gradient approximation:

fla+v) = f(z) + V (@) v+ o(|[v]]2).

The approximation f(z +v) = f(x) + Vf(x)Tv gives a tangent plane at the point z as we
let v vary.

Figure 5: Tangent Plane for f : R? — R



If f is differentiable, we can use the gradient to compute an arbitrary directional deriva-
tive:

flayu) = V)

From this expression we can quickly see that (assuming V f(x) # 0)

Vf(z) Vf(z)

argmax f'(z;u) = ———~— and argmin f'(v;u) = ———~—

ufla=1 [V f ()] l[ufl2=1 IV f(@)ll2

In words, we say that the gradient points in the direction of steepest ascent, and the negative
gradient points in the direction of steepest descent.

As in the 1-dimensional case, if f : R" — R is differentiable and x is a local extremum of
f then we must have V f(x) = 0. Points x with Vf(z) = 0 are called critical points. As we
will see later in the course, if a function is differentiable and convex, then a point is critical
if and only if it is a global minimum.
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Figure 6: Critical Points of f : R?> — R

Computing Gradients

A simple method to compute the gradient of a function is to compute each partial derivative
separately. For example, if f : R3 — R is given by

f(ffla Ta, 933) = log(l + ew1+2m2+3x3)



then we can directly compute

€x1+2$2+3$3 2em1+2x2+3x3 36x1+21‘2+3$3

axlf(xlax%x?)) = 8x2f(x1,a:2,x3) = 8x3f(3§'1,372,333) =

1 + €$1+21‘2+3$3 ) 1 + ezl+2x2+3x3 ’ 1 + 6x1+2:p2+3x3

and obtain
el +2z2+3x3

1 + er1+2z2+3w3
2¢e%1 +2x2+3x3

Vf($1,$2,1'3) =

1+em +2x2+373
3e;t1 +2x2+43x3

1 _|_ exl +2x2+3x3

Alternatively, we could let w = (1,2, 3)T and write
f(x) =log(1+ "),

Then we can apply a version of the chain rule which says that if g : R — R and h: R* - R
are differentiable then

Vg(h(z)) = ¢'(h(x))Vh(x).
Applying the chain rule twice (for log and exp) we obtain

1 T
Vf(:t) = Wew xw,

where we use the fact that V,(w”z) = w. This last expression is more concise, and is more
amenable to vectorized computation in many languages.

Another useful technique is to compute a general directional derivative and then infer
the gradient from the computation. For example, let f : R™ — R be given by

f(z) = ||Az — y||3 = (Az — y)"(Az — y) = 2T AT Az — 2y" Az + y"y,

for some A € R™*™ and y € R™. Assuming f is differentiable (so that f’(z;v) = V f(z)Tv)
we have

flz+tv) = (v+t)TATA(x +tv) — 29" A(z +tv) + 'y
= oTAT Az 4+ 20T AT Av + 2taT AT Av — 2y" Az — 2ty Av + 4Ty
= f(z)+t22"ATA - 2T A)v + 20T AT Av.
Thus we have
flz+t) — f(x)

t
Taking the limit as ¢ — 0 shows

= (20T ATA — 29" A)w + toT AT Av.

fl(z;v) = (207 ATA — 29" Ay = Vf(x) = (227 ATA - 2y" A)" = 247 Az — 2ATy.
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Assume the columns of the data matrix A have been centered (by subtracting their respective
means). We can interpret V f(z) = 2AT (Ax — y) as (up to scaling) the covariance between
the features and the residual.

Using the above calculation we can determine the critical points of f. Let’s assume
here that A has full column rank. Then A” A is invertible, and the unique critical point is
r = (ATA)71ATy. As we will see later in the course, this is a global minimum since f is
convex (the Hessian of f satisfies V2f(x) = 2ATA = 0).

(x) Proving Differentiability

With a little extra work we can make the previous technique give a proof of differentiability.
Using the computation above, we can rewrite f(z + v) as f(z) plus terms depending on v:

flz+v) = f(z)+ (20T ATA — 2" A)v + v AT Av.
Note that - ) .
v A v flAv]z _ ALl

0]l [ollla = lvll

as ||v]|a — 0. (This section is starred since we used the matrix norm [|A||y here.) This shows
f(z 4 v) above has the form

= [[Allzllv]l2 — 0,

fla+v) = f(z) + V (@) v+ o(|[v]2).
This proves that f is differentiable and that
Vf(z) =2AT Az — 2ATy.

Another method we could have used to establish differentiability is to observe that the partial
derivatives are all continuous. This relies on the following theorem.

Theorem 1. Let f : R" — R and suppose 0., f(x) : R" — R is continuous for all x € R"
and alli=1,...,n. Then f is differentiable.



