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Recitation 1 Initial Question

Intro Question

Question

We are given the data set (x1,¥1),. .., (Xn, yn) Where x; € R? and y; € R.
We want to fit a linear function to this data by performing empirical risk
minimization. More precisely, we are using the hypothesis space

F ={f(x) =w'x | w & R} and the loss function £(a,y) = (a — y)>.
Given an initial guess w for the empirical risk minimizing parameter vector,
how could we improve our guess?

Yy x
x
X X
< xx X
x x X
P
x X x
x
X 94
x
x e X% x < x
x < % x T
x X
x  x x
x
Brett Bernstein (CDS at NYU) Recitation 1

January 21, 2018 2/23



Recitation 1 Initial Question

Intro Solution

Solution
@ The empirical risk is given by

~ 1
Ra(f) = ZE (xi),yi) = Z(W Xj — YI ;HXW_)/H%,

where X € R"*? is the matrix whose ith row is given by x;.

@ Can improve a non-optimal guess w by taking a small step in the
direction of the negative gradient.
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Single Variable Calculus
Single Variable Differentiation

@ Calculus lets us turn non-linear problems into linear algebra.

o For f : R — R differentiable, the derivative is given by

f(x+ h)—f(x)
P .

f'(x)=li
(x) Pkl

@ Can also be written as
f(x + h) = f(x) + hf'(x) + o(h) as h—0,

where o(h) denotes a function g(h) with g(h)/h — 0 as h — 0.
e Points with f'(x) = 0 are called critical points.
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SV e
1D Linear Approximation By Derivative

f(xo) + (t = @0) f'(wo)

f(t) = (f(xo) + (t = @0) f'(w0))

(3507 f(xo))
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Recitation 1 Multivariable Calculus

Multivariable Differentiation

@ Consider now a function f : R” — R with inputs of the form
x=(x1,...,x) € R".

@ Unlike the 1-dimensional case, we cannot assign a single number to
the slope at a point since there are many directions we can move in.
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Multivariable Calculus

Recitation 1

Multiple Possible Directions for f : R> — R
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Directional Derivative

Definition

Let £ : R" — R. The directional derivative f'(x; u) of f at x € R" in the
direction u € R" is given by

F(x: 1) = ’l)i_r>n0 f(X+hL;7) — f(x).

e By fixing a direction u we turned our multidimensional problem into a
1-dimensional problem.

@ Similar to 1-d we have
f(x + hu) = f(x) + hf'(x; u) + o(h).
e We say that u is a descent direction of f at x if f'(x;u) < 0.
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Directional Derivative as a Slope of a Slice

\u
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Recitation 1 Multivariable Calculus

Partial Derivative

i-1
e Let ¢ =(0,0,...,0,1,0,...,0) denote the jth standard basis vector.
@ The ith partial derivative is defined to be the directional derivative
along e;.
@ It can be written many ways:

f'(x; &) = aax,-f(x) = 05 f(x) = 0if(x).

@ What is the intuitive meaning of dy,f(x)? For example, what does a
large value of Oy, f(x) imply?
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ST T
Differentiability

e We say a function f : R” — R is differentiable at x € R" if

v — ) —gTy
v—0 lv||2

=0,

for some g € R".

o If it exists, this g is unique and is called the gradient of f at x with

notation
g = VIf(x).
@ It can be shown that
O f(x)
Vi(x) = :
axnf(x)
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Recitation 1 Multivariable Calculus

Useful Convention

o Consider f : RPT9 — R,

@ Split the input x € RPT9 into parts w € RP and z € RY so
that x = (w, z).

@ Define the partial gradients

Ow f(w, 2) 9., F(w, 2)

Vuf(w,z) = : and V,f(w,z):= :
6Wpf(w, z) 8qu(w, z)
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Multivarizble Calculus
Tangent Plane

Analogous to the 1-d case we can express differentiability as

f(x+v)="~f(x)+ Vf(x)Tv + o([|v||2)-

The approximation f(x + v) & f(x) + Vf(x) v gives a tangent plane
at the point x.

The tangent plane of f at x is given by
P={(x+v,f(x)+Vf(x)Tv)|veR"} CR"

@ Methods like gradient descent approximate a function locally by its
tangent plane, and then take a step accordingly.
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T E A
Tangent Plane for f : R> = R

Brett Bernstein (CDS at NYU) Recitation 1 January 21, 2018 14 /23



Recitation 1 Multivariable Calculus

Directional Derivatives from Gradients

o If f is differentiable we have
f'(x;u) = VF(x)Tu.
o If Vf(x) # 0 this implies that
V(x) L Vf(x)
argmax f'(x;u) = ———2— and argminf'(x; u)=———-2>—.
remax (i 1) = e e min £ O

The gradient points in the direction of steepest ascent.

The negative gradient points in the direction of steepest descent.
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Multivariable Calculus
Critical Points

@ Analogous to 1-d, if f : R” — R is differentiable and x is a local
extremum then we must have Vf(x) = 0.

e Points with Vf(x) = 0 are called critical points.

o Later we will see that for a convex differentiable function, x is a
critical point if and only if it is a global minimizer.
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Multivariable Calculus
Critical Points of f : R2 - R

minimum

saddle
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SnedC s
Computing Gradients

Question
For questions 1 and 2, compute the gradient of the given function.
@ 7 :R3— Ris given by
f(Xl,XQ,Xg,) = Iog(l + eX1+2X2+3X3).
Q@ f:R" — R is given by
F(x) = |Ax—y[3 = (Ax—y) "(Ax—y) = xTATAx =2y TAx +y Ty,

for some A€ R™*" and y € R™.

© Assume A in the previous question has full column rank. What is the
critical point of 7
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Recitation 1 Computing Gradients

f(Xl, X2, X3) = |Og(1 + €X1+2X2+3X3) Solution 1

We can compute the partial derivatives directly:

exi +2x2+3x3

O f(le X2, X3) = 1 + ex1t2x2+3x3

2eX1 +2x2+3x3

Oof(x, o xs) = T moisg

3ext +2x2+3x3

Oxs f(le X2, X3) = 1 + ex1t2x2+3x3

and obtain
eX1+2x2+3x3
1+ exl+2xz+3X3

2eX11+2x243x3
Vf(xi,x0,x3) = | =
1+ exl+2xz+3X3

3eX1+2x2+3x3
1+ ex +2x2+3x3
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f(x1,x2, x3) = log(1 + 4722¥3%) Solution 2

o Let w=(1,2,3)".
o Write f(x) = log(1 + e¥ ).

@ Apply a version of the chain rule:

T
eWX

Theorem (Chain Rule)
Ifg:R— R and h:R" — R are differentiable then

V(g o h)(x) = g'(h(x))Vh(x).
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Computing Gradients
f(x) = ||Ax — y||3 Solution

@ We could use techniques similar to the previous problem, but instead
we show a different method using directional derivatives.

@ For arbitrary t € R and x,v € R” we have

f(x+tv)
= (x+tv)TATA(x+tv) =2y TA(x + tv) +yTy
= xTATAx+ t?2vTATAv 4+ 2txTATAv — 2y TAx — 2ty TAv + y Ty
= f(x)+t(2xTATA—2yTA)v + t2vTAT Av.

@ This gives

f(x+ tv) — f(x)
t

=(2xTATA=2yTA)v =VF(x)Tv

! . .
f(x,v)—ll_r;rg)

o Thus Vf(x) =2(ATAx — ATy) = 2AT (Ax — y).
e Data science interpretation of Vf(x)?
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Computing Gradients
Critical Points of f(x) = ||Ax — y||3

Need Vf(x) = 2AT Ax —2ATy = 0.

Since A is assumed to have full column rank, we see that AT A is
invertible.

Thus we have x = (ATA)"tATy.

As we will see later, this function is strictly convex (Hessian
V2f(x) = 2AT A is positive definite).

@ Thus we have found the unique minimizer (least squares solution).
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Computing Gradients
Technical Aside: Differentiability

@ When computing the gradients above we assumed the functions were
differentiable.

@ Can use the following theorem to be completely rigorous.

Theorem

Let f : R" — R and suppose O,.f : R" — R is continuous for i =1,...,n.
Then f is differentiable.
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