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Recitation 1 Initial Question

Intro Question

Question

We are given the data set (x1, y1), . . . , (xn, yn) where xi ∈ Rd and yi ∈ R.
We want to fit a linear function to this data by performing empirical risk
minimization. More precisely, we are using the hypothesis space
F = {f (x) = wT x | w ∈ Rd} and the loss function `(a, y) = (a− y)2.
Given an initial guess w̃ for the empirical risk minimizing parameter vector,
how could we improve our guess?

y

x
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Recitation 1 Initial Question

Intro Solution

Solution

The empirical risk is given by

R̂n(f ) =
1

n

n∑
i=1

`(f (xi ), yi ) =
1

n

n∑
i=1

(wT xi − yi )
2 =

1

n
‖Xw − y‖22,

where X ∈ Rn×d is the matrix whose ith row is given by xi .

Can improve a non-optimal guess w̃ by taking a small step in the
direction of the negative gradient.
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Recitation 1 Single Variable Calculus

Single Variable Differentiation

Calculus lets us turn non-linear problems into linear algebra.

For f : R→ R differentiable, the derivative is given by

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

Can also be written as

f (x + h) = f (x) + hf ′(x) + o(h) as h→ 0,

where o(h) denotes a function g(h) with g(h)/h→ 0 as h→ 0.

Points with f ′(x) = 0 are called critical points.
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Recitation 1 Single Variable Calculus

1D Linear Approximation By Derivative

f(t)− (f(x0) + (t− x0)f
′(x0))

(x0, f(x0))

f(t)

f(x0) + (t− x0)f
′(x0)
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Recitation 1 Multivariable Calculus

Multivariable Differentiation

Consider now a function f : Rn → R with inputs of the form
x = (x1, . . . , xn) ∈ Rn.

Unlike the 1-dimensional case, we cannot assign a single number to
the slope at a point since there are many directions we can move in.
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Recitation 1 Multivariable Calculus

Multiple Possible Directions for f : R2 → R
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Recitation 1 Multivariable Calculus

Directional Derivative

Definition

Let f : Rn → R. The directional derivative f ′(x ; u) of f at x ∈ Rn in the
direction u ∈ Rn is given by

f ′(x ; u) = lim
h→0

f (x + hu)− f (x)

h
.

By fixing a direction u we turned our multidimensional problem into a
1-dimensional problem.

Similar to 1-d we have

f (x + hu) = f (x) + hf ′(x ; u) + o(h).

We say that u is a descent direction of f at x if f ′(x ; u) < 0.
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Recitation 1 Multivariable Calculus

Directional Derivative as a Slope of a Slice
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Recitation 1 Multivariable Calculus

Partial Derivative

Let ei = (

i−1︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, . . . , 0) denote the ith standard basis vector.

The ith partial derivative is defined to be the directional derivative
along ei .

It can be written many ways:

f ′(x ; ei ) =
∂

∂xi
f (x) = ∂xi f (x) = ∂i f (x).

What is the intuitive meaning of ∂xi f (x)? For example, what does a
large value of ∂x3f (x) imply?
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Recitation 1 Multivariable Calculus

Differentiability

We say a function f : Rn → R is differentiable at x ∈ Rn if

lim
v→0

f (x + v)− f (x)− gT v

‖v‖2
= 0,

for some g ∈ Rn.

If it exists, this g is unique and is called the gradient of f at x with
notation

g = ∇f (x).

It can be shown that

∇f (x) =

 ∂x1f (x)
...

∂xn f (x)

 .
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Recitation 1 Multivariable Calculus

Useful Convention

Consider f : Rp+q → R.

Split the input x ∈ Rp+q into parts w ∈ Rp and z ∈ Rq so
that x = (w , z).

Define the partial gradients

∇w f (w , z) :=

 ∂w1f (w , z)
...

∂wp f (w , z)

 and ∇z f (w , z) :=

 ∂z1f (w , z)
...

∂zq f (w , z)

 .
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Recitation 1 Multivariable Calculus

Tangent Plane

Analogous to the 1-d case we can express differentiability as

f (x + v) = f (x) +∇f (x)T v + o(‖v‖2).

The approximation f (x + v) ≈ f (x) +∇f (x)T v gives a tangent plane
at the point x .

The tangent plane of f at x is given by

P = {(x + v , f (x) +∇f (x)T v) | v ∈ Rn} ⊆ Rn+1.

Methods like gradient descent approximate a function locally by its
tangent plane, and then take a step accordingly.
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Recitation 1 Multivariable Calculus

Tangent Plane for f : R2 → R
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Recitation 1 Multivariable Calculus

Directional Derivatives from Gradients

If f is differentiable we have

f ′(x ; u) = ∇f (x)Tu.

If ∇f (x) 6= 0 this implies that

arg max
‖u‖2=1

f ′(x ; u) =
∇f (x)

‖∇f (x)‖2
and arg min

‖u‖2=1
f ′(x ; u) = − ∇f (x)

‖∇f (x)‖2
.

The gradient points in the direction of steepest ascent.

The negative gradient points in the direction of steepest descent.
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Recitation 1 Multivariable Calculus

Critical Points

Analogous to 1-d, if f : Rn → R is differentiable and x is a local
extremum then we must have ∇f (x) = 0.

Points with ∇f (x) = 0 are called critical points.

Later we will see that for a convex differentiable function, x is a
critical point if and only if it is a global minimizer.
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Recitation 1 Multivariable Calculus

Critical Points of f : R2 → R

Brett Bernstein (CDS at NYU) Recitation 1 January 21, 2018 17 / 23



Recitation 1 Computing Gradients

Computing Gradients

Question

For questions 1 and 2, compute the gradient of the given function.

1 f : R3 → R is given by

f (x1, x2, x3) = log(1 + ex1+2x2+3x3).

2 f : Rn → R is given by

f (x) = ‖Ax − y‖22 = (Ax − y)T (Ax − y) = xTATAx − 2yTAx + yT y ,

for some A ∈ Rm×n and y ∈ Rm.

3 Assume A in the previous question has full column rank. What is the
critical point of f ?
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Recitation 1 Computing Gradients

f (x1, x2, x3) = log(1 + ex1+2x2+3x3) Solution 1

We can compute the partial derivatives directly:

∂x1f (x1, x2, x3) =
ex1+2x2+3x3

1 + ex1+2x2+3x3

∂x2f (x1, x2, x3) =
2ex1+2x2+3x3

1 + ex1+2x2+3x3

∂x3f (x1, x2, x3) =
3ex1+2x2+3x3

1 + ex1+2x2+3x3

and obtain

∇f (x1, x2, x3) =


ex1+2x2+3x3

1 + ex1+2x2+3x3

2ex1+2x2+3x3

1 + ex1+2x2+3x3

3ex1+2x2+3x3

1 + ex1+2x2+3x3

 .
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Recitation 1 Computing Gradients

f (x1, x2, x3) = log(1 + ex1+2x2+3x3) Solution 2

Let w = (1, 2, 3)T .

Write f (x) = log(1 + ew
T x).

Apply a version of the chain rule:

∇f (x) =
ew

T x

1 + ewT x
w .

Theorem (Chain Rule)

If g : R→ R and h : Rn → R are differentiable then

∇(g ◦ h)(x) = g ′(h(x))∇h(x).
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Recitation 1 Computing Gradients

f (x) = ‖Ax − y‖2
2 Solution

We could use techniques similar to the previous problem, but instead
we show a different method using directional derivatives.

For arbitrary t ∈ R and x , v ∈ Rn we have

f (x + tv)
= (x + tv)TATA(x + tv)− 2yTA(x + tv) + yT y
= xTATAx + t2vTATAv + 2txTATAv − 2yTAx − 2tyTAv + yT y
= f (x) + t(2xTATA− 2yTA)v + t2vTATAv .

This gives

f ′(x ; v) = lim
t→0

f (x + tv)− f (x)

t
= (2xTATA− 2yTA)v = ∇f (x)T v

Thus ∇f (x) = 2(ATAx − AT y) = 2AT (Ax − y).

Data science interpretation of ∇f (x)?

Brett Bernstein (CDS at NYU) Recitation 1 January 21, 2018 21 / 23



Recitation 1 Computing Gradients

Critical Points of f (x) = ‖Ax − y‖2
2

Need ∇f (x) = 2ATAx − 2AT y = 0.

Since A is assumed to have full column rank, we see that ATA is
invertible.

Thus we have x = (ATA)−1AT y .

As we will see later, this function is strictly convex (Hessian
∇2f (x) = 2ATA is positive definite).

Thus we have found the unique minimizer (least squares solution).
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Recitation 1 Computing Gradients

Technical Aside: Differentiability

When computing the gradients above we assumed the functions were
differentiable.

Can use the following theorem to be completely rigorous.

Theorem

Let f : Rn → R and suppose ∂xi f : Rn → R is continuous for i = 1, . . . , n.
Then f is differentiable.
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