Stochastic Gradient Descent J

David S. Rosenberg
New York University

January 30, 2018

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 1/25



Review: Statistical Learning Theory Framework J

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 2/25



Our Setup from Statistical Learning Theory

The Spaces

e X: input space @ Y: outcome space o A: action space

Prediction Function (or “decision function™)

A prediction function (or decision function) gets input x € X and produces an action a € A :

f: X - A
x = f(x)

Loss Function

A loss function evaluates an action in the context of the outcome y.

{: AxY — R
(ay) = fay)
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f: X — A is

R(f) =EL(f(x),y).

In words, it's the expected loss of f on a new exampe (x,y) drawn randomly from Py .

Definition
A Bayes prediction function f*:X — A is a function that achieves the minimal risk among

all possible functions:
f* €argminR(f),
f

where the minimum is taken over all functions from X to A. )

@ The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dp=((x1,¥1),...,(Xn,¥n)) be drawn i.i.d. from Py y.

Definition
The empirical risk of f: X — A with respect to D, is

Rulf) = 3 UF (). ).
i=1

@ But we saw that the unconstrained empirical risk minimizer overfits.

o i.e. if we minize R,(f) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space F is a set of functions mapping X — A.
@ It is the collection of prediction functions we are choosing from.

e Empirical risk minimizer (ERM) in F is

fn e argminEZE(f(Xi).y/‘)-
feg N

@ From now on “ERM" always means “constrained ERM".

@ So we should always specify the hypothesis space when we're doing ERM.
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Example: Linear Least Squares Regression

Setup

Input space X = R?
Output space Y =R
Action space Y =R

o Loss: U(7,y)=(y—y)°

Hypothesis space: F={f:R? > R|f(x)=w'x, we R/}

o Given data set D, ={(x1,y1),..., (Xm¥n)}
o Let’s find the ERM f € 7.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:
A T 2
fulw) =13 (whi— ),
i=1

where w € R? parameterizes the hypothesis space 7.

@ Now let's think more generally...
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Gradient Descent for Empirical Risk - Scaling Issues J
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Gradient Descent for Empirical Risk and Averages

@ Suppose we have a hypothesis space of functions F = {fw X —Alwe Rd}
o Parameterized by w € RY.

@ ERM is to find w minimizing

@ Suppose L(fy(x;),y;) is differentiable as a function of w.

o Then we can do gradient descent on R,(w)...
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Gradient Descent: How does it scale with n?

@ At every iteration, we compute the gradient at current w:

VR,(w) = 1 E Vo l(fw(xi), i)
n
i—1

@ We have to touch all n training points to take a single step. [O(n)]
o Will this scale to “big data"?

@ Can we make progress without looking at all the data?
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“Noisy” Gradient Descent

We know gradient descent works.

But the gradient may be slow to compute.
@ What if we just use an estimate of the gradient?

Turns out that can work fine.

Intuition:
o Gradient descent is an interative procedure anyway.

o At every step, we have a chance to recover from previous missteps.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 13 /25



Minibatch Gradient

@ The full gradient is
1 n
= Esze(fw(xi):)/i)
i=1

@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n) 1}

o Let's take a random subsample of size N (called a minibatch):
(Xm]_v_yml)v DR | (Xva}/mN)

@ The minibatch gradient is

= \

N
Z Xm, ym,-)

@ What can we say about the minibatch gradient? It's random. What's its expectation?
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Minibatch Gradient

@ What's the expected value of the minibatch gradient?

N
E [VQN(W)} = L;E[vwe(fw(xm;)r)/m;)]
- E[vwe(fw(xml)vyml)]

_ ZIP(mlzi)VWf(fw(Xi),y,’)
i—1

= Y Vullfule)y)
i=1

= v"%n(w)

@ Technical note: We only assumed that each point in the minibatch is equally likely to be
any of the n points in the batch — no independence needed. So still true if we're sampling
without replacement. Still true if we sample one point randomly and reuse it N times.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 15 /25



Minibatch Gradient Properties

@ Minibatch gradient is an unbiased estimator for the [full] batch gradient:

E [vfe,\,(w)} — VR, (w)

@ The bigger the minibatch, the better the estimate.
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Minibatch Gradient — In Practice

@ Tradeoffs of minibatch size:

o Bigger N = Better estimate of gradient, but slower (more data to touch)
e Smaller N = Worse estimate of gradient, but can be quite fast

e Even N =1 works, it's traditionally called stochastic gradient descent (SGD).

These days, people use SGD to refer to minibatch SGD as well.

If someone says “SGD", you ask — “What's your [mini]batch size?", to avoid ambiguity.
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Terminology Review (Rough)

o Gradient descent or “full-batch” gradient descent
o Use full data set of size n to determine step direction
@ Minibatch gradient descent

e Use a random subset of size N to determine step direction
o Yoshua Bengio says':

e N is typically between 1 and few hundred
o N =32 is a good default value
e With N > 10 we get computational speedup (per datum touched)

@ Stochastic gradient descent

e Minibatch with m=1.
o Use a single randomly chosen point to determine step direction.

But these days terminology isn't used so consistently, so always clarify the [mini]batch size.

1See Yoshua Bengio's “Practical recommendations for gradient-based training of deep architectures”
http://arxiv.org/abs/1206.5533.
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Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size )
e initialize w =0
@ repeat
e randomly choose N points {(x,-,y,-)},’-v=1 cD,
o W+ w—n {ﬁ vazl wa(fw(Xi):YI)}
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Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

@ initialize w =0

@ repeat
e randomly choose training point (x;,y;) € D,
e W—w-—nm VWe(fW(Xi)i.yl')
—_—

Grad(Loss on i'th example)
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Step Size: In practice

@ For SGD, fixed step size can work well in practice.

o Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving.

@ But no theorem for this giving performance guarantees (to my knowledge).
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Robbins-Monro conditions

e For convergence guarantee, use decreasing step sizes (dampens noise in step direction).

@ Let 1; be the step size at the t'th step.

Robbins-Monro Conditions
Many classical convergence results depend on the following two conditions:

o0 o0
D Ni<oo ) me=oo
t=1 t=1

@ Asfast asm:; =0 (l) would satisfy this... but should be faster than O ( L )

t

B

@ A useful reference for practical techniques: Leon Bottou's “Tricks':
http://research.microsoft.com/pubs/192769/tricks-2012.pdf
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Practical Comparison of GD vs SGD J
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Practical Comparison of GD vs SGD

@ For huge data, GD isn't practical.

@ In a theoretical sense, GD is much faster than SGD... (i.e. better convergence rates)
e but most of that benefit happens once you're already pretty close to the solution

e much faster to add an extra decimal place of accuracy on the minimum
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Does SGD Catch Up to GD?

@ Ridge regression objective function value for GD and SGD with various stepsizes

10°

alpha = 0.01
alpha = 0.1
alpha = 1/t

alpha = 1/sqrt(t)
batch

100 200 300 400 500

@ Why doesn’t SGD catch up to batch GD? It does, just takes a very long time.
@ Is it worth the wait? As we discuss in next module, probably not...
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