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Repeated Features
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A Very Simple Model

Suppose we have one feature x1 ∈ R.
Response variable y ∈ R.
Got some data and ran least squares linear regression.
The ERM is

f̂ (x1) = 4x1.

What happens if we get a new feature x2,
but we always have x2 = x1?
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Duplicate Features

New feature x2 gives no new information.
ERM is still

f̂ (x1,x2) = 4x1.

Now there are some more ERMs:

f̂ (x1,x2) = 2x1+2x2

f̂ (x1,x2) = x1+3x2

f̂ (x1,x2) = 4x2

What if we introduce `1 or `2 regularization?
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Duplicate Features: `1 and `2 norms

f̂ (x1,x2) = w1x1+w2x2 is an ERM iff w1+w2 = 4.
Consider the `1 and `2 norms of various solutions:

w1 w2 ‖w‖1 ‖w‖22
4 0 4 16
2 2 4 8
1 3 4 10
-1 5 6 26

‖w‖1 doesn’t discriminate, as long as all have same sign
‖w‖22 minimized when weight is spread equally
Picture proof: Level sets of loss are lines of the form w1+w2 = 4...
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Equal Features, `2 Constraint

Suppose the line w1+w2 = 2
√
2+3.5 corresponds to the empirical risk minimizers.

Empirical risk increase as we move away from these parameter settings
Intersection of w1+w2 = 2

√
2 and the norm ball ‖w‖2 6 2 is ridge solution.

Note that w1 = w2 at the solution
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Equal Features, `1 Constraint

Suppose the line w1+w2 = 5.5 corresponds to the empirical risk minimizers.
Intersection of w1+w2 = 2 and the norm ball ‖w‖1 6 2 is lasso solution.
Note that the solution set is {(w1,w2) : w1+w2 = 2,w1,w2 > 0}.
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Linearly Dependent Features
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Linearly Related Features

Linear prediction functions: f (x) = w1x2+w2x2

Same setup, now suppose x2 = 2x1.

Then all functions with w1+2w2 = k are the same.
give same predictions and have same empirical risk

What function will we select if we do ERM with `1 or `2 constraint?

Compare a solution that just uses w1 to a solution that just uses w2...
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Linearly Related Features, `2 Constraint

w1+2w2 = 10/
√
5+7 corresponds to the empirical risk minimizers.

Intersection of w1+2w2 = 10
√
5 and the norm ball ‖w‖2 6 2 is ridge solution.

At solution, w2 = 2w1.
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Linearly Related Features, `1 Constraint

Intersection of w1+2w2 = 4 and the norm ball ‖w‖1 6 2 is lasso solution.
Solution is now a corner of the `1 ball, corresonding to a sparse solution.
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Linearly Dependent Features: Take Away

For identical features
`1 regularization spreads weight arbitrarily (all weights same sign)
`2 regularization spreads weight evenly

Linearly related features
`1 regularization chooses variable with larger scale, 0 weight to others
`2 prefers variables with larger scale – spreads weight proportional to scale
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Empirical Risk for Square Loss and Linear Predictors

Recall our discussion of linear predictors f (x) = wT x and square loss.
Sets of w giving same empirical risk (i.e. level sets) formed ellipsoids around the ERM.

With x1 and x2 linearly related, XTX has a 0 eigenvalue.

So the level set
{
w | (w − ŵ)T XTX (w − ŵ) = nc

}
is no longer an ellipsoid.

It’s a degenerate ellipsoid – that’s why level sets were pairs of lines in this case
KPM Fig. 13.3
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Correlated Features
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Correlated Features – Same Scale

Suppose x1 and x2 are highly correlated and the same scale.
This is quite typical in real data, after normalizing data.

Nothing degenerate here, so level sets are ellipsoids.

But, the higher the correlation, the closer to degenerate we get.
That is, ellipsoids keep stretching out, getting closer to two parallel lines.
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Correlated Features, `1 Regularization

Intersection could be anywhere on the top right edge.
Minor perturbations (in data) can drastically change intersection point – very unstable
solution.
Makes division of weight among highly correlated features (of same scale) seem arbitrary.

If x1 ≈ 2x2, ellipse changes orientation and we hit a corner. (Which one?)
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The Case Against Sparsity
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A Case Against Sparsity

Suppose there’s some unknown value θ ∈ R.
We get 3 noisy observations of θ:

x1,x2,x3 ∼ N (θ,1) (i.i.d)

What’s a good estimator θ̂ for θ?
Would you prefer θ̂= x1 or θ̂= 1

3 (x1+ x2+ x3)?
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Estimator Performance Analysis

E [x1] = θ and E
[1

3 (x1+ x2+ x3)
]
= θ. So both unbiased.

Var [x1] = 1.
Var
[1

3 (x1+ x2+ x3)
]
= 1

9 (1+1+1) = 1
3 .

Average has a smaller variance — the independent errors cancel each other out.
Similar thing happens in regression with correlated features:

e.g. If 3 features are correlated, we could keep just one of them.
But we can potentially do better by using all 3.
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Example with highly correlated features

Model in words:
y is some unknown linear combination of z1 and z2.
But we don’t observe z1 and z2 directly.

We get 3 noisy observations of z1, call them x1,x2,x3.
We get 3 noisy observations of z2, call them x4,x5,x6.

We want to predict y from our noisy observations.

That is, we want an estimator ŷ = f (x1,x2,x3,x4,x5,x6) for estimating y .

Example from Section 4.2 in Hastie et al’s Statistical Learning with Sparsity.
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Example with highly correlated features

Suppose (x ,y) generated as follows:

z1,z2 ∼ N(0,1) (independent)
ε0,ε1, . . . ,ε6 ∼ N(0,1) (independent)

y = 3z1−1.5z2+2ε0

xj =

{
z1+εj/5 for j = 1,2,3
z2+εj/5 for j = 4,5,6

Generated a sample of ((x1, . . . ,x6) ,y) pairs of size n = 100.

That is, we want an estimator ŷ = f (x1,x2,x3,x4,x5,x6) that is good for estimating y .

High feature correlation: Correlations within the groups of x ’s is around 0.97.

Example from Section 4.2 in Hastie et al’s Statistical Learning with Sparsity.
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Example with highly correlated features

Lasso regularization paths:

Lines with the same color correspond to features with essentially the same information
Distribution of weight among them seems almost arbitrary
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Hedge Bets When Variables Highly Correlated

When variables are highly correlated (and same scale – assume we’ve standardized
features),

we want to give them roughly the same weight.

Why?
Let their errors cancel out

How can we get the weight spread more evenly?
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Elastic Net
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Elastic Net

The elastic net combines lasso and ridge penalties:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ1‖w‖1+λ2‖w‖22

We expect correlated random variables to have similar coefficients.
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Highly Correlated Features, Elastic Net Constraint

Elastic net solution is closer to w2 = w1 line, despite high correlation.
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Elastic Net Results on Model

Lasso on left; Elastic net on right.
Ratio of `2 to `1 regularization roughly 2 : 1.
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Elastic Net - “Sparse Regions”

Suppose design matrix X is orthogonal, so XTX = I , and contours are circles (and
features uncorrelated)
Then OLS solution in green or red regions implies elastic-net constrained solution will be
at corner

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.9
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Elastic Net – A Theorem for Correlated Variables

Theorem
Let ρij = ĉorr(xi ,xj). Suppose features x1, . . . ,xd are standardized and ŵi and ŵj are selected
by elastic net, with ŵi ŵj > 0. Then

|ŵi − ŵj |6
‖y‖2

√
2√

nλ2

√
1−ρij .

Proof.
See Theorem 1 in Zou and Hastie’s 2005 paper “Regularization and variable selection via the
elastic net.” Or see these notes that adapt their proof to our notation.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 6, 2018 30 / 33

https://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf
https://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf
https://davidrosenberg.github.io/mlcourse/Notes/elastic-net-theorem.pdf


Extra Pictures
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Elastic Net vs Lasso Norm Ball

From Figure 4.2 of Hastie et al’s Statistical Learning with Sparsity.
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`1.2 vs Elastic Net

From Hastie et al’s Elements of Statistical Learning.
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