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Subgradients: Recap
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First-Order Approximation

@ Suppose f : R? — R is differentiable.
@ Predict f(y) given f(x) and Vf(x)?
o Linear (i.e. “first order”) approximation:

fly) =~ f(x)+VFf(x)T(y—x)
() /

Boyd & Vandenberghe Fig. 3.2
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First-Order Condition for Convex, Differentiable Function

@ Suppose f:R? — R is convex and differentiable.

e Then for any x,y € R?
fly) = f(x)+VF(x)T (y—x)

@ The linear approximation to f at x is a global underestimator of f:

()

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradients

Definition

A vector g € R? is a subgradient of f : R? — R at x if for all z,

flz) > f(x)+g" (z—x).

A

\/

Blue is a graph of f(x).
Each red line x — f(xg) +g " (x—xp) is a global lower bound on f(x).
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Subdifferential

Definitions
o f is subdifferentiable at x if 3 at least one subgradient at x.

@ The set of all subgradients at x is called the subdifferential: 0f(x)

Basic Facts J

@ f is convex and differentiable at x = 0f(x) ={Vf(x)}.
@ At any point x, there can be 0, 1, or infinitely many subgradients.

@ 0f(x) =0 = f is not convex.
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Subgradients give Ascent Directions J
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Contour Lines and Gradients

@ For function f:RY — R,
o graph of function lives in RY*1,

o gradient and subgradient of f live in RY, and
o contours, level sets, and sublevel sets are in RY.
o f:R? — R continuously differentiable, V(xq) # 0, then V£ (xo) normal to level set
S={xeRY|f(x)=f(x)}.

@ Proof sketch in notes.
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Gradient orthogonal to sublevel sets

Vi(z)

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

@ A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.
o If f:RY — R has subgradient g at xg, then the hyperplane H orthogonal to g at xp must
support the level set S={x € R?|f(x) = f(xo) }.
Proof:
@ For any y, we have f(y) > f(xp) +& ' (y —xo). (def of subgradient)
o If y is strictly on side of H that g points in,

e then g7 (y—xp) > 0.
e So f(y) > f(xo).
e So y is not in the level set S.

@ .. All elements of S must be on H or on the —g side of H.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 13, 2018 11/19



Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

g"(y—v) <0 w2

Z1

f) 2 f0) +4"(y—v) > fv)

Plot courtesy of Brett Bernstein.
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Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

9Tly-v) <0 24

J0) 2 @) +9" =) > f(v)

@ Points on g side of H have larger f-values than f(xp). (from proof)
@ But points on —g side may not have smaller f-values.

@ So —g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent
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Subgradient Descent

@ Suppose f is convex, and we start optimizing at xg.
@ Repeat
e Step in a negative subgradient direction:

x=x—tg,

where t > 0 is the step size and g € 97 (xg).

@ —g not a descent direction — can this work?
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Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.
o Let x=x9—tg, for g € 0f(xp).
@ Let z be any point for which f(z) < f(xp).
@ Then for small enough t >0,

[x = z|l2 < [[x0— z||2.

e Apply this with z=x* € argmin, f(x).

— Negative subgradient step gets us closer to minimizer.
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Subgradient Gets Us Closer To Minimizer (Proof)

@ Let x=x9—tg, for g € 0f(xp) and t > 0.
@ Let z be any point for which f(z) < f(xp).
@ Then
Ix—zl3 = |x—tg—z|3
= |xo—zl3—2tg" (xo—2)+1*|gll3
< o—2zl3—2tlf(x0) = F(2)] + g3
o Consider —2t[f(xo) — f(2)] + t?|Ig]|3.

e It's a convex quadratic (facing upwards).
o Has zeros at t =0 and t =2(f(x) —f(2)) /||g||3 > 0.

o Therefore, it's negative for any
ce (o.20bol_tial)
lells

Based on Boyd EE364b: Subgradients Slides
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Convergence Theorem for Fixed Step Size

Assume f : R" — R is convex and

@ f is Lipschitz continuous with constant G > 0:
()~ F(Y) < Gllx—y]| for all x,y

Theorem

For fixed step size t, subgradient method satisfies:

lim f(xbest) f(x*)+ G?%t/2

k—o00

Based on https://www.cs.cmu.edu/ ggordon/10725-F12/slides/06- sg-method.pdf
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Convergence Theorems for Decreasing Step Sizes

Assume f : R" — R is convex and

@ f is Lipschitz continuous with constant G > 0:
()~ F(Y) < Gllx—y]| for all x,y

Theorem

For step size respecting Robbins-Monro conditions,

lim F(x5)) = F(x*)

k—00

Based on https://www.cs.cmu.edu/ ggordon/10725-F12/slides/06- sg-method.pdf

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 13, 2018 19 /19


https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf

	Subgradients: Recap
	Subgradients give Ascent Directions
	Subgradient Descent

