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Subgradients: Recap
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First-Order Approximation

Suppose f : Rd → R is differentiable.
Predict f (y) given f (x) and ∇f (x)?
Linear (i.e. “first order”) approximation:

f (y)≈ f (x)+∇f (x)T (y − x)

Boyd & Vandenberghe Fig. 3.2
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First-Order Condition for Convex, Differentiable Function

Suppose f : Rd → R is convex and differentiable.
Then for any x ,y ∈ Rd

f (y)> f (x)+∇f (x)T (y − x)

The linear approximation to f at x is a global underestimator of f :

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradients

Definition

A vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z ,

f (z)> f (x)+gT (z− x).

Blue is a graph of f (x).
Each red line x 7→ f (x0)+gT (x − x0) is a global lower bound on f (x).
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Subdifferential

Definitions
f is subdifferentiable at x if ∃ at least one subgradient at x .
The set of all subgradients at x is called the subdifferential: ∂f (x)

Basic Facts

f is convex and differentiable at x =⇒ ∂f (x) = {∇f (x)}.
At any point x , there can be 0, 1, or infinitely many subgradients.
∂f (x) = ∅ =⇒ f is not convex.
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Subgradients give Ascent Directions
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Contour Lines and Gradients

For function f : Rd → R,
graph of function lives in Rd+1,
gradient and subgradient of f live in Rd , and
contours, level sets, and sublevel sets are in Rd .

f : Rd → R continuously differentiable, ∇f (x0) 6= 0, then ∇f (x0) normal to level set

S =
{
x ∈ Rd | f (x) = f (x0)

}
.

Proof sketch in notes.
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Gradient orthogonal to sublevel sets

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.
If f : Rd → R has subgradient g at x0, then the hyperplane H orthogonal to g at x0 must
support the level set S =

{
x ∈ Rd | f (x) = f (x0)

}
.

Proof:
For any y , we have f (y)> f (x0)+gT (y − x0). (def of subgradient)
If y is strictly on side of H that g points in,

then gT (y − x0)> 0.
So f (y)> f (x0).
So y is not in the level set S .

∴ All elements of S must be on H or on the −g side of H.
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Subgradient of f (x1,x2) = |x1|+2 |x2|

Plot courtesy of Brett Bernstein.
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Subgradient of f (x1,x2) = |x1|+2 |x2|

Points on g side of H have larger f -values than f (x0). (from proof)
But points on −g side may not have smaller f -values.
So −g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent
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Subgradient Descent

Suppose f is convex, and we start optimizing at x0.
Repeat

Step in a negative subgradient direction:

x = x0− tg ,

where t > 0 is the step size and g ∈ ∂f (x0).

−g not a descent direction – can this work?
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Subgradient Gets Us Closer To Minimizer

Theorem
Suppose f is convex.

Let x = x0− tg , for g ∈ ∂f (x0).
Let z be any point for which f (z)< f (x0).
Then for small enough t > 0,

‖x − z‖2 < ‖x0− z‖2.

Apply this with z = x∗ ∈ argminx f (x).

=⇒Negative subgradient step gets us closer to minimizer.
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Subgradient Gets Us Closer To Minimizer (Proof)

Let x = x0− tg , for g ∈ ∂f (x0) and t > 0.
Let z be any point for which f (z)< f (x0).
Then

‖x − z‖22 = ‖x0− tg − z‖22
= ‖x0− z‖22−2tgT (x0− z)+ t2‖g‖22
6 ‖x0− z‖22−2t [f (x0)− f (z)]+ t2‖g‖22

Consider −2t [f (x0)− f (z)]+ t2‖g‖22.
It’s a convex quadratic (facing upwards).
Has zeros at t = 0 and t = 2(f (x0)− f (z))/‖g‖22 > 0.
Therefore, it’s negative for any

t ∈
(

0,
2(f (x0)− f (z))

‖g‖22

)
.

Based on Boyd EE364b: Subgradients Slides
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Convergence Theorem for Fixed Step Size

Assume f : Rn→ R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For fixed step size t, subgradient method satisfies:

lim
k→∞ f (x

(k)
best)6 f (x∗)+G 2t/2

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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Convergence Theorems for Decreasing Step Sizes

Assume f : Rn→ R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For step size respecting Robbins-Monro conditions,

lim
k→∞ f (x

(k)
best) = f (x∗)

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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