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The SVM as a Quadratic Program J
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The Margin

Definition
The margin (or functional margin) for predicted score y and true class y € {—1,1} is yy. J

@ The margin often looks like yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are.
e We want to maximize the margin.

@ Most classification losses depend only on the margin.
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Hinge Loss

e SVM/Hinge loss: {Hinge = max{1—m,0}
e Margin m = yf(x)

Loss
== Zero_One

== Hinge

0
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Hypothesis space ¥ = {f(x) =w'x+b|w € R, b€ R}.

{5 regularization (Tikhonov style)

Loss £(m) = max{1—m,0}

The SVM prediction function is the solution to

) 1 ¢ o
wEardI,rl])eREHWH2+ n; max (0,1—y; [WTX;+b]) .

(In SVMs it's common to put the regularization parameter ¢ on the empirical risk part,
rather than on the €2 penalty part.)
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SVM Optimization Problem (Tikhonov Version)

The SVM prediction function is the solution to

: 1 5 C - -
Wegy’rgeRillwll —i—n;max(O,l—y,- (w'xi+b]).

@ unconstrained optimization
e not differentiable because of the max (right at the border of a margin error)

o Can we reformulate into a differentiable problem?
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SVM Optimization Problem

@ The SVM optimization problem is equivalent to

minimize

subject to

@ Which is equivalent to

minimize

subject to
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&; > max (O,l—y,- [WTX,-—i-b]) .

1, 5 Cw
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(1—y,- [WTXi+b]) fori=1,...,n
0
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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

e 1, » Cw
minimize §||W|| +n;£;
=
subject to —&;<0fori=1,...,n

(1—-y [WTXi+b])—E,;§0for i=1,...,n

Differentiable objective function
n+d+1 unknowns and 2n affine constraints.

A quadratic program that can be solved by any off-the-shelf QP solver.

Let's learn more by examining the dual.
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Lagrangian Duality for SVM J
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The SVM Dual Problem

@ Following recipe and with some algebra, the SVM dual problem is equivalent to:

n n

E 1 E T

sup Xj— 5 oc,-ocjy,-ijj Xij

4 ; =
i=1 ij=1

n
s.t. Z ojyi =0
i=1

X € [O,£:| i=1,....n.
n

@ Let o* be solution to this optimization problem (the dual optimal point).

@ Can show that the SVM solution is
n
w* = Z o YiXi
i=1

@ w* is “in the span of the data” —i.e. a linear combination of xi,..., X,.
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The Margin and Some Terminology

@ For notational convenience, define f*(x) = x " w* + b*.
@ Margin yf*(x)

Loss(m)

Margin m=yi(x)

@ Incorrect classification: yf*(x) < 0.

@ Margin error: yf*(x) < 1.

@ “On the margin™: yf*(x) =1.

@ "“Good side of the margin": yf*(x) > 1.
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Complementary Slackness Results: Summary

e SVM optimal parameter is w* =7 ; aFyix;.

@ We can derive the following relations from complementary slackness conditions:

O(

=  yif"(x)>1
0, 1

0
) = yif"(x) =
_c
n

S0 ||

*
I

= yif"(x) <1

y,-f*(x,-)<1 = o

1

S0

yif '(xi) =1 =

m

o
S0
[

o

[0 8
y,-f*(x,-)>1 — CXTZ
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Support Vectors

e If o* is a solution to the dual problem, then primal solution is

n

* *

w = E &} YiXj
i=1

with o € [0, 7].
@ The x;'s corresponding to « > 0 are called support vectors.
@ Few margin errors or “on the margin” examples = sparsity in input examples.

@ This becomes important when we get to kernelized SVMs.
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Teaser for Kernelization J
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Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

n n
1
sup Z Xj— 5 Z oc,-ocjy,-ijij,-
& i=1 ij=1
n
s.t. Z ojyi =0
i=1

cx,-E[O,ﬂ i=1,....n.

o Note that all dependence on inputs x; and x; is through their inner product: (x;, x;) :ijx,-.

@ We can replace ijx,- by any other inner product...

@ This is a "kernelized” objective function.
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