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The SVM as a Quadratic Program
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The Margin

Definition
The margin (or functional margin) for predicted score ŷ and true class y ∈ {−1,1} is y ŷ .

The margin often looks like yf (x), where f (x) is our score function.
The margin is a measure of how correct we are.

We want to maximize the margin.

Most classification losses depend only on the margin.
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Hinge Loss

SVM/Hinge loss: `Hinge =max {1−m,0}
Margin m = yf (x)

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Hypothesis space F =
{
f (x) = wT x +b | w ∈ Rd , b ∈ R

}
.

`2 regularization (Tikhonov style)
Loss `(m) =max {1−m,0}

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.

(In SVMs it’s common to put the regularization parameter c on the empirical risk part,
rather than on the `2 penalty part.)
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SVM Optimization Problem (Tikhonov Version)

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.

unconstrained optimization
not differentiable because of the max (right at the border of a margin error)
Can we reformulate into a differentiable problem?
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SVM Optimization Problem

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi >max
(
0,1− yi

[
wT xi +b

])
.

Which is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi >
(
1− yi

[
wT xi +b

])
for i = 1, . . . ,n

ξi > 0 for i = 1, . . . ,n
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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Differentiable objective function
n+d +1 unknowns and 2n affine constraints.
A quadratic program that can be solved by any off-the-shelf QP solver.
Let’s learn more by examining the dual.
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Lagrangian Duality for SVM
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The SVM Dual Problem

Following recipe and with some algebra, the SVM dual problem is equivalent to:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Let α∗ be solution to this optimization problem (the dual optimal point).

Can show that the SVM solution is

w∗ =
n∑

i=1

α∗i yixi

w∗ is “in the span of the data” – i.e. a linear combination of x1, . . . ,xn.
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The Margin and Some Terminology

For notational convenience, define f ∗(x) = xTw∗+b∗.
Margin yf ∗(x)

Incorrect classification: yf ∗(x)6 0.
Margin error: yf ∗(x)< 1.
“On the margin”: yf ∗(x) = 1.
“Good side of the margin”: yf ∗(x)> 1.
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Complementary Slackness Results: Summary

SVM optimal parameter is w∗ =
∑n

i=1α
∗
i yixi .

We can derive the following relations from complementary slackness conditions:

α∗i = 0 =⇒ yi f
∗(xi )> 1

α∗i ∈
(
0,
c

n

)
=⇒ yi f

∗(xi ) = 1

α∗i =
c

n
=⇒ yi f

∗(xi )6 1

yi f
∗(xi )< 1 =⇒ α∗i =

c

n

yi f
∗(xi ) = 1 =⇒ α∗i ∈

[
0,
c

n

]
yi f
∗(xi )> 1 =⇒ α∗i = 0
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Support Vectors

If α∗ is a solution to the dual problem, then primal solution is

w∗ =
n∑

i=1

α∗i yixi

with α∗i ∈ [0, cn ].
The xi ’s corresponding to α∗i > 0 are called support vectors.
Few margin errors or “on the margin” examples =⇒ sparsity in input examples.
This becomes important when we get to kernelized SVMs.
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Teaser for Kernelization
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Dual Problem: Dependence on x through inner products

SVM Dual Problem:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Note that all dependence on inputs xi and xj is through their inner product: 〈xj ,xi 〉= xTj xi .

We can replace xTj xi by any other inner product...
This is a “kernelized” objective function.
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