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A General Optimization Problem
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General Optimization Problem: Standard Form

Inequality Constrained Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

where x ∈ Rn are the optimization variables and f0 is the objective function.

No assumptions on functions f0, . . . , fm.
(In particular no convexity assumptions.)
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The Primal and the Dual

For any primal form optimization problem,

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(λ)

subject to λi > 0, i = 1, . . . ,m,

where λ= (λ1, . . . ,λm) are called Lagrange multipliers or dual variables.

In this formulation, g may take the value −∞. Can get rid of this with additional constraints.
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The Dual is Always a Convex Problem

For any primal problem (convex or not), g is a concave function.

Thus the dual is a concave maximization problem:

maximize g(λ)

subject to λi > 0, i = 1, . . . ,m.

Switch sign of g and change max 7→min to get a convex optimization problem.
Because of the trivial equivalence to a convex optimization problem, concave maximization
problems are also typically considered convex optimization problems.

Can the dual problem help us solve the primal problem?
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Lagrangian Duality
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Primal and Dual Optimal Points (Definitions)

Primal problem

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m,

Dual problem

maximize g(λ)

subject to λi > 0, i = 1, . . . ,m,

The primal optimal value is p∗ = inf {f0(x) | x satisfies all constraints} .
x∗ is an primal optimal point if x∗ is feasible and f (x∗) = p∗.
The dual optimal value is d∗ = sup {g(λ) | λi > 0, i = 1, . . . ,m} .

λ∗ is a dual optimal point if λ∗i > 0, i = 1, . . . ,m and g(λ∗) = d∗.
λ∗i ’s are also called optimal Lagrange multipliers.
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Weak Duality

For any optimization problem, we have p∗ > d∗.

This is called weak duality.
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Weak Duality – Illustrated

We always have weak duality: p∗ > d∗.

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p∗ = d∗.

For convex problems, strong duality is fairly typical.
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Strong Duality – Illustrated

Under certain conditions, we have strong duality: p∗ = d∗.

Plot courtesy of Brett Bernstein.
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From Dual Solution to Primal?

Suppose λ∗ is the dual optimal solution.
Does this help us find x∗, the primal optimal solution?

In general, it may not be easy to go from λ∗ to x∗.
It depends on the form of the primal problem.
For SVMs, we’ll see that it’s easy to go from dual to primal solution.
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Convex Optimization
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

where f0, . . . , fm are convex functions.
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Slater’s Constraint Qualifications for Strong Duality

For a convex optimization problem over domain Rn,
a sufficient condition for strong duality is

∃x ∈ Rd such that fi (x)< 0 for i = 1, . . . ,m.

Such an x is called a strictly feasible point.
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Consequences of Strong Duality
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Complementary Slackness

If we have strong duality, we get an interesting relationship between
the optimal Lagrange multiplier λ∗i and
the ith constraint at the optimum: fi (x

∗)

Relationship is called “complementary slackness”:

λ∗i fi (x
∗) = 0

Implies that at optimum, at least one of the following is satisfied:

λ∗i = 0
fi (x

∗) = 0 (constraint is "active")
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