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Estimating a Probability Distribution: Setting

o Let p(y) represent a probability distribution on Y.

@ p(y) is unknown and we want to estimate it.
@ Assume that p(y) is either a
e probability density function on a continuous space Y, or a
o probability mass function on a discrete space Y.
o Typical Y's:
o Y=R; Y =R [typical continuous distributions]
o Y={-1,1} [e.g. binary classification]
e Y={0,1,2,...,K} [e.g. multiclass problem]
e Y={0,1,2,3,4...} [unbounded counts]
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Evaluating a Probability Distribution Estimate

o Before we talk about estimation, let’s talk about evaluation.

@ Somebody gives us an estimate of the probability distribution

ply).

@ How can we evaluate how good it is?
e We want p(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

@ Suppose we have
D =(y1,...,yn) sampled i.i.d. from true distribution p(y).

@ Then the likelihood of 5 for the data D is defined to be
pD)=]]h0).
i=1

e If pis a probability mass function, then likelihood is probability.
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Parametric Models

Definition
A parametric model is a set of probability distributions indexed by a parameter 6 € ©. We
denote this as

{p(y;0) 16 €6},

where 0 is the parameter and © is the parameter space.

o Below we'll give some examples of common parametric models.
e But it's worth doing research to find a parametric model most appropriate for your data.

e We'll sometimes say family of distributions for a probability model.
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Poisson Family

@ Support Y={0,1,2,3,...}.
o Parameter space: (A€ R|A >0}
@ Probability mass function on k € Y:

p(k;A) =Ake™™/ (k)

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.
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Beta Family

e Support Y=(0,1). [The

unit interval.]

@ Parameter space: {0 = (o, B) | ¢, p > 0}

@ Probability density function on y € Y:

y

“i-y)P

ply;a b)=

B(x,B)

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.
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https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg

Gamma Family

@ Support Y = (0,00). [Positive real numbers]
o Parameter space: {0 = (k,0)| k> 0,0 >0}
@ Probability density function on y € Y:

ply; k,0) =

I(k)ok

xk—le=y/0,
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@ Special cases: exponential distribution, chi-squared distribution, Erlang distribution

Figure from Wikipedia https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg.
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Likelihood in a Parametric Model

Suppose we have a parametric model {p(y;0) |6 € ®} and a sample D = (y1,...,yn).

o The likelihood of parameter estimate 6 € © for sample D is

=] Ipyi:6
i=1

@ In practice, we prefer to work with the log-likelihood. Same maximizer, but

log p(D; 6) Zlogpy,, ,

and sums are easier to work with than products.
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Maximum Likelihood Estimation

@ Suppose D = (y1,...,y,) is an i.i.d. sample from some distribution.
Definition
A maximum likelihood estimator (MLE) for 6 in the model {p(y;0) |6 € B} is

6 € argmaxlogp(D,H)
0cO

n
= arg maxZ log p(y;;0).
0cO ‘3
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Maximum Likelihood Estimation

e Finding the MLE is an optimization problem.
@ For some model families, calculus gives a closed form for the MLE.

e Can also use numerical methods we know (e.g. SGD).
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MLE Existence

In certain situations, the MLE may not exist.

But there is usually a good reason for this.

e.g. Gaussian family {N(p,02) |p € R, 0% >0}

We have a single observation y.
@ Is there an MLE?

Taking w=y and 02 — 0 drives likelihood to infinity.
MLE doesn't exist.
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Example: MLE for Poisson

@ Observed counts D = (kq, ..., k,) for taxi cab pickups over n weeks.
e k;j is number of pickups at Penn Station Mon, 7-8pm, for week /.

@ We want to fit a Poisson distribution to this data.

@ The Poisson log-likelihood for a single count is

k .—A
log lp(kiN)] = Iog[A:,}

= klogA—A—log(k!)

o The full log-likelihood is

n

logp(D,A) = Z [kilogA — A —log (k;!)].
i=1
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Example: MLE for Poisson

@ The full log-likelihood is

n

logp(D,A) = Y [kilogA—A—log (k)]

@ First order condition gives

) © Tk
Oza[logp(ﬂ?\)] = ;[}\—1}

1 n
i=1
@ So MLE A is just the mean of the counts.
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Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method \ Test Log-Likelihood ‘
Poisson —392.16
Negative Binomial —188.67
Histogram (Bin width = 7) —00
.95 Histogram +.05 NegBin —203.89
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Estimating Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE can overfit!

Example Probability Models:
o F ={Poisson distributions}.
o F ={Negative binomial distributions}.
o F ={Histogram with 10 bins}
o F ={Histogram with bin for every y € Y} [will likely overfit for continuous data]

How to judge which model works the best?

Choose the model with the highest likelihood on validation set.
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