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Linear Probabilistic Models vs GLMs

o Today we'll be talking about linear probabilistic models.

@ Most books and software libraries related to this topic are actually about
o generalized linear models (GLMs).

GLMs are a special case of what we're talking about today.

They're “special” because

o they're a restriction of our setting
o there are theorems for GLMs that we don't have in our more general setting

@ However, a full development of GLMs requires a fair bit of additional machinery.
e In particular, exponential families — a topic from intermediate statistics courses.

Exponential families are wonderful, but | don't believe they're worth the payoff at this level.

For practical purposes, our development will be more than sufficient (and simpler).
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Conditional Distribution Estimation (Generalized Regression)

o Given x, predict probability distribution p(y)

@ How do we represent the probability distribution?
e We'll consider parametric families of distributions.
o distribution represented by parameter vector

e Examples:

Logistic regression (Bernoulli distribution)

Probit regression (Bernoulli distribution)

Poisson regression (Poisson distribution)

Linear regression (Normal distribution, fixed variance)

Generalized Linear Models (GLM) (encompasses all of the above)

Generalized Additive Models (GAM) (popular in statistics community)

Gradient Boosting Machines (GBM) / AnyBoost [in a few weeks]

Almost all neural network models used in practice (though this is not their essential feature)

©0000000
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Bernoulli Regression
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Probabilistic Binary Classifiers

Setting: X =R, Y={0,1}

For each x, need to predict a distribution on Y ={0, 1}.

How can we define a distribution supported on {0,1}7
Sufficient to specify the Bernoulli parameter 8 = p(y =1).

We can refer to this distribution as Bernoulli(0).
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Linear Probabilistic Classifiers

Setting: X =R9, Y=1{0,1}
Want prediction function to map each x € R? to 0 € [0, 1].

We first extract information from x € R? and summarize in a single number.
e That number is analogous to the score in classification.

For a linear method, this extraction is done with a linear function:

X WTX
~—~ ~—~—
€Rd €R

As usual, x — w ' x will include affine functions if we include a constant feature in x.

w T x is called the linear predictor.

Still need to map this to [0, 1].
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The Transfer Function

@ Need a function to map the linear predictor in R to [0, 1]:

x —wlx— flwx)=6,
< =~ ,
S R €l0,1]

where f: R — [0,1]. We'll call f the transfer function.

@ So prediction function is x — f(w ' x).

Terminology Alert

In generalized linear models (GLMs), if 0 is the distribution mean, then f is called the
response function or inverse link function. We avoid that terminology, since we do not
require O to be the distribution mean.
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Transfer Functions for Bernoulli

e Two commonly used transfer functions to map from w’x to ©:

1.00 -
0.75-
Y
0.50 - Logistic Function
=== Normal CDF
0.25-
0.00 -
50 -25 00 25 50
Linear(x)
e Logistic function: f(n) = H% — Logistic Regression
2 . .
@ Normal CDF f(n) = f’loo ﬁe*’( /2 — Probit Regression
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Learning

Input space X = RY

Outcome space Y = {0, 1}

Action space A = [0, 1] (Representing Bernoulli(0) distributions by 6 € [0, 1])
Hypothesis space F = {x > f(w'x) |w € R}

Parameter space RY (Each prediction function represented by w € R9.)

We can choose w using maximum likelihood...

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 27, 2018 12 /37



Bernoulli Regression: Likelihood Scoring Example

@ Suppose we have X =R and data D: (—3,0),(0,0), (

@ Our model is p(y =1 x) = f(wx), for some parameter w € R.
@ Compute the likelihood for each observation:

1,1),(2,0) e Rx{0,1}

> [ [e=Fwd [ 300
—310| 3w | f(-3w) |1—-Ff(-3w)
0|0 0 f(0) 1—£(0)

1 ]1 w f(w) f(w)
2 10| 2w f(2w) 1—f(2w)

@ The likelihood of w for the data D is

p(D;w)=[1—F(=3w)]-[L—F(O)]- [F(w)]-[L—F(2w)]

@ The MLE w is the w € R maximizing p(D; w) for the given D.
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A Clever Way To Write p(y | x; w)

e For a given x,w € RY and y €{0,1}, the likelihood of w for (x,y) is

flw'x) y=1

s = {107

@ It will be convenient to write this as

ply xiw) = [FwTx)])” [1—F(wTx)]" 7,

which is obvious as long as you remember y € {0, 1}.
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Bernoulli Regression: Likelihood Scoring

@ Suppose we have data D: (x1,y1),..., (Xn. yn) € R?x{0,1}.
@ The likelihood of w € R? for data D is

p(D:w) = Hp(y,-|x,-;w) [by independence]
i=1

n

= TTIFw )" [1—fFwx)]" .

i=1
o Easier to work with the log-likelihood:

n

log p(D;w) = Y (vilog F(w7x;)+ (1—y;)log [1— F(w )]
i=1
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Bernoulli Regression: MLE

Maximum Likelihood Estimation (MLE) finds w maximizing log p(D, w).

Equivalently, minimize the negative log-likelihood objective function
Jw) == yilogf(w'x)+(1—y:)log [1—F(wTx)]
i=1

o For differentiable f,
e J(w) is differentiable, and we can use our standard tools.

Possible Homework: Derive the SGD step directions for logistic regression and [harder]
probit regression.
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Poisson Regression

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 27, 2018 17 /37



Poisson Regression: Setup

Input space X = RY, Output space Y =1{0,1,2,3,4,...}
In Poisson regression, prediction functions produce a Poisson distribution.
o Represent Poisson(A) distribution by the mean parameter A € (0, 00).

Action space A = (0, 00)

In Poisson regression, x enters linearly: x — w'x— A= f(w'x).
~~—~ ~——

R (0,00)

What can we use as the transfer function f : R — (0,00)?
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Poisson Regression: Transfer Function

@ In Poisson regression, x enters linearly:

x> wlixsA=f(wx).
~— ———
R (0,00)

@ Standard approach is to take
fwTx)=exp (WTX) .

o Note that range of f(w'x) € (0,00), (appropriate for the Poisson parameter).
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Poisson Regression: Likelihood Scoring

@ Suppose we have data D ={(x1,y1),..., (Xm ¥n)}-

@ Recall the log-likelihood for Poisson parameter A; on observation y; is:
logp(yiiAi) = lyilogAj—Ai—log (yi!)]

o Now we want to predict a different A; for every x; with the model

Ai=Ffwx)=exp (WTX,') )

@ The likelihood for w on the full dataset D is

n

logp(Diw) = > [yilog[exp (w'xi)] —exp (wx;) —log (y!)]
i=1
= Z[y,-WTX,'—EXp(WTXi)_log(}/i!)]
i=1

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 27, 2018 20 /37



Poisson Regression: MLE

@ To get MLE, need to maximize

J(w)=logp(D;w) = Z [y,-WTx,-—exp (WTX,') —log (y,-!)]
i=1

over w € RY.

@ No closed form for optimum, but it's concave, so easy to optimize.
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Poisson Regression Example

y

e Example application: Phone call counts per day for a startup company, over 300 days.
@ Blue line is mean p(x) =exp(wx), some w € R. (Only linear part x — wx is learned.)

@ Samples are y; ~ Poisson(wx;).

Plot courtesy of Brett Bernstein.
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Nonlinear Score Function: Sneak Preview

Y

@ Blue line is mean p(x) =exp(f(x)), for some nonlinear f learned from data.
@ Samples are y; ~ Poisson(exp (f(x;)).

@ We can do this with gradient boosting and neural networks, coming up in a few weeks.

Plot courtesy of Brett Bernstein.
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Conditional Gaussian Regression J
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Gaussian Linear Regression

Input space X =R, Output space Yy =R
In Gaussian regression, prediction functions produce a distribution N(u, 02).

o Assume 02 is known.

Represent N(i, 02) by the mean parameter i € R.

Action space A =R
o In Gaussian linear regression, x enters linearly: x — w'x+— pu=f(w'x).
~— ——
R
R

Since u € R, we can take the identity transfer function: f(w'x)=wTx.
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Gaussian Regression: Likelihood Scoring

Suppose we have data D ={(x1,y1),..., (X0, ¥a)}.
Compute the model likelihood for D:

p(D;w) :Hp(y,- | xi;w) [by independence]
i=1

Maximum Likelihood Estimation (MLE) finds w maximizing p(D; w).

Equivalently, maximize the data log-likelihood:

n
w* =argmax ) _logp(yi | xj;w)
weRd

@ Let's start solving this!
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Gaussian Regression: MLE

@ The conditional log-likelihood is:

D logplyil xi;w)

i=1

. 1 (yi—w'x)?
g"’g[aﬁ“p(‘y )

Sl £ 25)

i=1

independent of w

e MLE is the w where this is maximized.
o Note that o2 is irrelevant to finding the maximizing w.
o Can drop the negative sign and make it a minimization problem.
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Gaussian Regression: MLE

@ The MLE is

w™* =argmin Z(y,- —w'x)?

weRd iy

o This is exactly the objective function for least squares.

e From here, can use usual approaches to solve for w* (SGD, linear algebra, calculus, etc.)
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Multinomial Logistic Regression J
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Multinomial Logistic Regression

Setting: X=RY, Y={1,... k}

@ For each x, we want to produce a distribution on k classes.

Such a distribution is called a “multinoulli” or “categorical’ distribution.

Represent categorical distribution by probability vector 6 = (81, ...,0,) € RX:
o Y ¥ .0;=1and0;>0fori=1,... k (i.e. O represents a distribution) and

SoVye{l,... .k}, ply) =0,.
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Multinomial Logistic Regression

@ From each x, we compute a linear score function for each class:
x = ((wr,x), ... (wk, x)) € RK,

where we've introduced parameter vectors wy, ..., wx € RY.
@ We need to map this R¥ vector of scores into a probability vector.
o Consider the softmax function:

el ek
(51,...,Sk)i—>9: yee ey .
Zf(:l esi Zf'(:1 esi

o Note that 8 € R and

6; > 0 i=1,...,k
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Multinomial Logistic Regression

@ Say we want to get the predicted categorical distribution for a given x € RY.
o First compute the scores (€ R¥) and then their softmax:

exp (WlTX) exp (W

K X) )
Zf'(:leXp(WiTX),”., Zf( 1eXP(W:TX)

x = ({wi,x), ... (Wi, x)) = 0 = <

@ We can write the conditional probability for any y €{1,...,k} as

ply | x;w) = exp (v )T

Zk 1€Xp (W/ )
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Multinomial Logistic Regression

@ Putting this together, we write multinomial logistic regression as
exp (WyTX)
ply [ xiw) = —¢ o
Y iy exp (wx)

@ How do we do learning here? What parameters are we estimating?
@ Our model is specified once we have wy, ..., w, € RY.
e Find parameter settings maximizing the log-likelihood of data D.
@ This objective function is concave in w's and straightforward to optimize.
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Maximum Likelihood as ERM J

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 27, 2018 34 /37



Conditional Probability Modeling as Statistical Learning

Input space X

Outcome space Y

All pairs (x,y) are independent with distribution Py yy.

Action space A ={p(y) | p is a probability density or mass function on Y}.
Hypothesis space F contains decision functions f : X — A.

Maximum likelihood estimation for dataset D = ((x1,¥1),..., (Xn, yn) is

fuLe € argmax ) log[f(x;) (yi)]
feg =

Exercise
Write the MLE optimization as empirical risk minimization. What's the loss? J
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Conditional Probability Modeling as Statistical Learning

o Take loss £: A xY — R for a predicted PDF or PMF p(y) and outcome y to be

tp,y)=—logp(y)

@ The risk of decision function f: X — A is
R(f) = _Ex,y log [f(X)(Y)] )

where f(x) is a PDF or PMF on Y, and we're evaluating it on y.
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Conditional Probability Modeling as Statistical Learning

@ The empirical risk of f for a sample D ={y1,..., ynt €Y is
RIH=—13 toglf(x)] ()
- — ogLr\Xi)l\Yi)-

This is called the negative conditional log-likelihood.

@ Thus for the negative log-likelihood loss, ERM and MLE are equivalent
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