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Learning Theory Framework J

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 28, 2018 3/45



Some Formalization
The Spaces

e X: input space @ Y: outcome space o A: action space

Prediction Function (or “decision function”)

A prediction function (or decision function) gets input x € X and produces an action a € A :

f: X - A
x = f(x)

Loss Function

A loss function evaluates an action in the context of the outcome y.

{: AxY — R
(ay) = fay)
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f: X — A is

R(f) =EL(f(x),y).

In words, it's the expected loss of f on a new example (x,y) drawn randomly from Py yy.

Definition
A Bayes prediction function f*:X — A is a function that achieves the minimal risk among

all possible functions:
f* €argminR(f),
f

where the minimum is taken over all functions from X to A. )

@ The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

o Let Dpy=((x1,¥1),---, (Xn.yn)) be drawn i.i.d. from Py yy.
@ The empirical risk of f: X — A with respect to D,, is

Rulf) = 3 U(F ). 31).
i=1

e A function f is an empirical risk minimizer if
fe argmin R (f),
f
where the minimum is taken over all functions.

@ But unconstrained ERM can overfit.
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Constrained Empirical Risk Minimization

@ Hypothesis space &, a set of [prediction] functions mapping X — A

e Empirical risk minimizer (ERM) in F is

. 1 ¢
f, € argmin fZK(f(Xi).Yi)-
feg Ni—]

e Risk minimizer in Jis £ € J, where

f3 € argminEL(f(x),y).
fes
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Error Decomposition

) \ f* =argminEL(f(X),Y)

° . f

f, : i
ng’ ;* fEF :argmlnEﬂ(f(X),Y))
) feF

AN 7 Ly
5-" All Functions fn :arfgmln;ZE(f(Xi),yi)
€r iz

e Approximation Error (of F) = R(fy)— R(f*)

e Estimation error (of £ in F) = R(%) — R(fs)
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Excess Risk Decomposition for ERM

o The excess risk of the ERM £, can be decomposed:

Excess Risk(f,) = R(f)—R(f*)
= R(f)—R(fr)+ R(f5)— R(f*) .

estimation error approximation error
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Optimization Error

In practice, we don't find the ERM 1?,, cF.

Optimization algorithm returns f, € F , which we hope is good enough.

Optimization error: If f, is the function our optimization method returns, and f, is the
empirical risk minimizer, then

~ ~

Optimization Error = R(f,) — R(f,).

3

o Extended decomposition:

Excess Risk(f,) = R(f,) — R(f*)

= R(fa) = R(fy) + R(fn) — R(f5) + R(f5) — R(f")

optimization error estimation error approximation error
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Regularization
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Constrained Empirical Risk Minimization

Constrained ERM (lvanov regularization)

For complexity measure QO : F — [0, 00) and fixed r > 0,

st. Q(f) < r

@ Choose r using validation data or cross-validation.

@ Each r corresponds to a different hypothesis spaces. Could also write:

fedF, n 4

min = > 0(F(x), )
=1
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Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)
For complexity measure Q) : F — [0, 00) and fixed A > 0,

n

min1 Lf(x;), i) +AQ(f)

@ Choose A using validation data or cross-validation.

o (Ridge regression in homework is of this form.)
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Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)
The ridge regression solution for regularization parameter A > 0 is

n

~ H 1 2
W = arg min — Z {wTxi—yi}" +|w|3,
weRd N =1

where [|w||3 = w2 +---+ w3 is the square of the {,-norm.

Ridge Regression (lvanov Form)

The ridge regression solution for complexity parameter r > 0 is

W—argmlan{W Xij — y,} .

Iwlig<r? M=
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Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter A > 0 is

~ H 1 . 2
W = argmin fZ {wx —yi} +A|w|1,
weRd M55

where [|w||1 = |wi|+ -+ |wyl| is the £1-norm.

Lasso Regression (lvanov Form)

The lasso regression solution for complexity parameter r > 0 is

—argmlan{W Xj — y,

Iwlla<r M52
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Ridge vs. Lasso: Regularization Paths

Ridge Regression
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Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Linearly Dependent Features: Take Away

o For identical features

o {; regularization spreads weight arbitrarily (all weights same sign)
o {5 regularization spreads weight evenly

o Linearly related features

e {; regularization chooses variable with larger scale, 0 weight to others
o {5 prefers variables with larger scale — spreads weight proportional to scale
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Correlated Features, €1 Regularization

\

[lwlly <2

@ Intersection could be anywhere on the top right edge.

@ Minor perturbations (in data) can drastically change intersection point — very unstable
solution.
e Makes division of weight among highly correlated features (of same scale) seem arbitrary.
o If x; & 2xy, ellipse changes orientation and we hit a corner. (Which one?)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 28, 2018 18 /45



Elastic Net

@ The elastic net combines lasso and ridge penalties:

n

. 1 2
i/ = arg min ;Z {wTxi—yi}” 4 Mllwlls +Agl wll3
weR i=1

@ We expect correlated random variables to have similar coefficients.
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Highly Correlated Features, Elastic Net Constraint

Bllwll + 2fwllf < 2

@ Elastic net solution is closer to wo = wy line, despite high correlation.
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Elastic Net Results on Model

Lasso Paths Elastic-Net Paths
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@ Lasso on left; Elastic net on right.
@ Ratio of £, to {; regularization roughly 2: 1.
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Elastic Net - “Sparse Regions”

elastic-net
ball

A =Nlel+lalf < p

@ Suppose design matrix X is orthogonal, so X" X =/, and contours are circles (and
features uncorrelated)

@ Then OLS solution in green or red regions implies elastic-net constrained solution will be
at corner

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.9
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https://arxiv.org/abs/1411.3230

Elastic Net Summary

@ With uncorrelated features, we can get sparsity.

@ Among correlated features (same scale), we spread weight more evenly.
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Finding Lasso Solution

@ Many options.
e Convert to quadratic program using positive/negative parts
, ! L N\T 2 T/ &
min_ ; <(W —w) x,-—y,-) +A1T (wt+wT)
subject to  w;" >0 for all i w; >0 for all /,
e Coordinate descent

o Lasso has closed form solution for coordinate minimizers!

@ Subgradient descent
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Optimization
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Gradient Descent for Empirical Risk and Averages

@ Suppose we have a hypothesis space of functions F = {fw X —Alwe Rd}
o Parameterized by w € RY.

@ ERM is to find w minimizing

@ Suppose L(fy(x;),y;) is differentiable as a function of w.

o Then we can do gradient descent on R,(w)...
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Gradient Descent: How does it scale with n?

@ At every iteration, we compute the gradient at current w:

VRy(w) = %vae(fw(xi)x}’i)
i—1

@ We have to touch all n training points to take a single step. [O(n)]

@ What if we just use an estimate of the gradient?
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Minibatch Gradient

@ The full gradient is ]
=23 Vullfulx). )
i=1
@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n)}
@ Let's take a random subsample of size N (called a minibatch):
(Xmlv)/ml)v e (Xva)/mN)

@ The minibatch gradient is

N
Z Xm, Ym,-)

= \

A~

@ Minibatch gradient is an unbiased estimate of full-batch gradient: E [V:QN(W)} =VR,(w)
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How big should minibatch be?

Tradeoffs of minibatch size:

o Bigger N = Better estimate of gradient, but slower (more data to touch)
e Smaller N = Worse estimate of gradient, but can be quite fast

e Even N =1 works, it's traditionally called stochastic gradient descent (SGD).

Quality of minibatch estimate depends on

e size of minibatch
e but is independent of full dataset size n

Discussed in Concept Check question.
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Descent Directions

@ A step direction is a descent direction if, for small enough step size, the objective
function value always decreases.

Negative gradient is a descent direction.

@ A negative subgradient is not a descent direction. But always takes you closer to a
minimizer.

Negative stochastic or minibatch gradient direction is not a descent direction. But we
have convergence theorems.

Negative stochastic subgradient step direction is not a descent direction. But we have
convergence theorems (not discussed in class).
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Classification
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The Score Function

@ Action space A =R Output space Y ={—1,1}
@ Real-valued prediction function f: X — R
Definition
The value f(x) is called the score for the input x. J

@ In this context, f may be called a score function.

@ Intuitively, magnitude of the score represents the confidence of our prediction.
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The Margin

Definition

The margin (or functional margin) for predicted score y and true class y € {—1,1} is yy. J

@ The margin often looks like yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are.

o If y and y are the same sign, prediction is correct and margin is positive.
o If y and y have different sign, prediction is incorrect and margin is negative.

o We want to maximize the margin.
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Classification Losses

Logistic/Log loss: { ogistic = log (1+e~™)

Loss
w== Zero_One
=== Hinge

=== | ogistic

Loss(m)
N

N

Marginom=y'f(x)

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).
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Support Vector Machine

Hypothesis space F = {f(x) =w'x+blweR? be R}.

{> regularization (Tikhonov style)

Loss £(m) = max{1—m,0}

The SVM prediction function is the solution to

. ]. 2 C " ] T,
weg]dl,rt])eREHWH —l—n;max(o,l—y, [W x,—i—b]).
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SVM as a Quadratic Program

@ The SVM optimization problem is equivalent to

. 1 € —
minimize *||W||2+*E &i

2 n—

=

subject to —&;, <0fori=1,...,n
(1—yi[w'xi+b])—& <0fori=1,....n

o Differentiable objective function
@ n-+d-+1 unknowns and 2n affine constraints.

@ A quadratic program that can be solved by any off-the-shelf QP solver.
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The Representer Theorem and Kernelization J
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General Objective Function for Linear Hypothesis Space (Details)

o Generalized objective:

,,Teig?{R(|’WH)+L(<W'Xl>'""<W'X">)'

where
® W,x1,...,xn € H for some Hilbert space (. (We typically have 3{ =R¢.)
o ||+ || is the norm corresponding to the inner product of 3. (i.e. ||w| = +/{w,w))
e R:[0,00) = R is nondecreasing (Regularization term), and
o L:R" — R is arbitrary (Loss term).

e Ridge regression and SVM are of this form.

@ What if we use lasso regression? No! {; norm does not correspond to an inner product.
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The Representer Theorem

Let J(w)=R(||w|)+L{({w,x1),...,{w,x,)) under conditions described above.

Theorem (Representer Theorem)

If J(w) has a minimizer, then it has a minimizer of the form

n
wt = E XjXj.
i=1

If R is strictly increasing, then all minimizers have this form.

Basic idea of proof:
o Let M =span(xy,...,x,). [the “span of the data”]
o Let w = Projyw*, for some minimizer w* of J(w).

@ Then (w,x;) = (w*,x;), so loss part doesn't change.

|lw|| < |[w*||, since projection reduces norm. So regularization piece never increases.
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Reparametrization with Representer Theorem

@ Original plan:
e Find w* € argminy, e ¢ R(Iw|)+L{w,x1),...,{w,x5))
o Predict with 7(x) = (w*, x).

@ Plugging in result of representer theorem, it's equivalent to
o Find o* € argminycrn R (\/ ocTKoc) +L(Kx)

o Predict with f(x) = kT o, where

(xixa) o (xxn) {x1, %)
K= : and kyx =

(Xn,x1) - (X, Xn) (Xn, x)

o Every element x € H occurs inside an inner products with a training input x; € H.
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Kernelization

Definition

A method is kernelized if every feature vector \)(x) only appears inside an inner product with

another feature vector \(x’). This applies to both the optimization problem and the prediction
function.

@ Here we are using \(x) = x. Thus finding

e argminR(\/ocTKoc) +L(Kx)

xeR”

and making predictions with f(x) = kI o* is a kernelization of finding

w* €argminR(||wl||)+L({w,x1),....(w,Xn))
weH

and making predictions with f(x) = (w*, x).
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Kernelization

@ Once we have kernelized:
o af €argmingcrn R (\/ chKoc) +L(Ka)
° )?(X) = k)Z—CX*

@ We can do the “kernel trick.
@ Replace each (x,x’) by k(x,x’), for any kernel function k, where k(x,x") = ({(x),P(x’)).

@ Predictions

Flx) =) afk(xi,x)
i=1
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The Kernel Function: Why do we need this?

Feature map: P: X — H

The kernel function corresponding to \ is

KGxx') = (h(x), (x)).

Why introduce this new notation k(x,x’)?

@ We can often evaluate k(x,x’) without explicitly computing \(x) and U (x’).

For large feature spaces, can be much faster.
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Kernelized SVM (From Lagrangian Duality)

o Kernelized SVM from computing the Lagrangian Dual Problem:

n n
§ 1 E T

orpea% Xj— 5 oc,-ocjy,-ijj Xij
i=1 ij=1

n
s.t. Zoc,-y,- =0
i=1
cl .
o € [O,—} i=1,...,n.
n
o If o* is an optimal value, then

n n
w* = Z o ViX; and f(x)= E ot yix; x.
i=1 i=1

o Note that the prediction function is also kernelized.
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Sparsity in the Data from Complementary Slackness

o Kernelized predictions given by
n
f(x)= Z oFyixi x.
i=1

e By a Lagrangian duality analysis (specifically from complementary slackness), we find
A * C
y,-f(x,-) <l = o = ;

N c

yifi) =1 = oielof]

y,-f(x,-) >1 = o =0

~

@ So we can leave out any x; “on the good side of the margin” (y;f(x;) > 1).

@ x;'s that we must keep, because oc” # 0, are called support vectors.
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