Bayesian Methods

David S. Rosenberg (New York University)

David S. Rosenberg

New York University

March 20, 2018

DS-GA 1003 / CSCI-GA 2567 March 20, 2018

1/38



Contents

@ Classical Statistics
© Bayesian Statistics: Introduction

© Bayesian Decision Theory

© Summary

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 March 20, 2018 2/38



Classical Statistics
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Parametric Family of Densities

o A parametric family of densities is a set
{p(y10):0 €0},

o where p(y | 0) is a density on a sample space Y, and
o 0 is a parameter in a [finite dimensional] parameter space ©.

@ This is the common starting point for a treatment of classical or Bayesian statistics.
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Density vs Mass Functions

@ In this lecture, whenever we say “density”, we could replace it with “mass function.”
o Corresponding integrals would be replaced by summations.

@ (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t.
different base measures.)
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Frequentist or “Classical” Statistics

@ Parametric family of densities
{p(y10)]16 €O}

@ Assume that p(y | 0) governs the world we are observing, for some 0 € ©.

If we knew the right 6 € ©, there would be no need for statistics.

@ Instead of 6, we have data D: yq,...,y, sampled i.i.d. p(y|90).

Statistics is about how to get by with D in place of 0.
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Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.
o A statistic 6 = 8(D) taking values in © is a point estimator of 6.

A good point estimator will have 6 ~ 6.
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Desirable Properties of Point Estimators

o Desirable statistical properties of point estimators:

o Consistency: As data size n — oo, we get 6, — 0.

~

o Efficiency: (Roughly speaking) 0, is as accurate as we can get from a sample of size n.

o Maximum likelihood estimators are consistent and efficient under reasonable conditions.
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The Likelihood Function

Consider parametric family {p(y |0):0 € ©} and i.i.d. sample D = (y1,...,¥n).
The density for sample D for 6 € © is

n

p(D18)=T]plyl0).

i=1

p(D10) is a function of D and 6.
For fixed 6, p(D | 0) is a density function on Y.
For fixed D, the function 0 +— p(D | 0) is called the likelihood function:

Lp(0):=p(D]0).
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Maximum Likelihood Estimation

Definition
The maximum likelihood estimator (MLE) for © in the model {p(y,0) |6 € B} is

éMLE = argmax L@(e).
0cO

@ Maximum likelihood is just one approach to getting a point estimator for 6.
@ Method of moments is another general approach one learns about in statistics.

o Later we'll talk about MAP and posterior mean as approaches to point estimation.
e These arise naturally in Bayesian settings.
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Coin Flipping: Setup

o Parametric family of mass functions:
p(Heads | 0) =0,
for 0 € ®=(0,1).

@ Note that every 6 € © gives us a different probability model for a coin.
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Coin Flipping: Likelihood function

@ DataD=(H,H, T, T, T, T,T,H,..., T)
e np: number of heads
e n:: number of tails

Assume these were i.i.d. flips.
Likelihood function for data D:

Lp(0)=p(D|0)=0"(1-0)"

@ This is the probability of getting the flips in the order they were received.
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Coin Flipping: MLE

@ As usual, easier to maximize the log-likelihood function:

Bue = argmaxlog L (0)
0cO
= argmax[n,logB+ n:log(1—0)]
0coO
o First order condition:
Np ne
Oh -0
0 1-6
— 0 = T
np+nt

o So OmLE is the empirical fraction of heads.
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Bayesian Statistics: Introduction J
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Bayesian Statistics

@ Introduces a new ingredient: the prior distribution.
@ A prior distribution p(0) is a distribution on parameter space O.

@ A prior reflects our belief about 0, before seeing any data..
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A Bayesian Model

o A [parametric] Bayesian model consists of two pieces:

© A parametric family of densities
{p(D6) 6 €O}

@ A prior distribution p(0) on parameter space ©.
o Putting pieces together, we get a joint density on 0 and D:

p(D,08) =p(D|0)p(6).
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The Posterior Distribution

@ The posterior distribution for 0 is p(0 | D).
@ Prior represents belief about 0 before observing data D.

@ Posterior represents the rationally “updated” belief about 0, after seeing D.
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Expressing the Posterior Distribution

o By Bayes rule, can write the posterior distribution as

p(D| 9)p(9)_

p(0|D) = (D)

@ Let's consider both sides as functions of 0, for fixed D.

@ Then both sides are densities on ©® and we can write

p(6 D) o p(D[06)p(0).
—_— ———

posterior likelihood prior

@ Where o< means we've dropped factors independent of 0.
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Coin Flipping: Bayesian Model

@ Parametric family of mass functions:
p(Heads | 0) =6,
for0 € ®=(0,1).
@ Need a prior distribution p(6) on © = (0,1).

@ A distribution from the Beta family will do the trick...
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Coin Flipping: Beta Prior

@ Prior:

0 ~ Beta(a, )
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Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.
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Coin Flipping: Beta Prior

@ Prior:

@ Mean of Beta distribution:

@ Mode of Beta distribution:

for h,t > 1.

David S. Rosenberg (New York University)

® ~ Beta(h,t)
p(0) o 0 1(1—0) 1!

EO=—
h+t

h—1
e = e—
argé“ax”( )=

DS-GA 1003 / CSCI-GA 2567 March 20, 2018

21/38



Coin Flipping: Posterior

@ Prior:

® ~ Beta(ht)
p(0) o 0 1(1—0)"!

o Likelihood function
L(®)=p(D|6)=0"(1-0)™
@ Posterior density:

p(6[D) o p(0)p(D|6)

ph1(1—0)"tx0o™(1—0)"
eh—1+nh (1 o e)tflJrnt

K
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Posterior is Beta

@ Prior:

® ~ Beta(h,t)
p(0) o 0 1(1—0) 1!

e Posterior density:

p(e ‘ D) x ehflJrnh (1 _e)t*lJrnt

@ Posterior is in the beta family:

0|D ~ Beta(h+np, t+n:)

o Interpretation:
e Prior initializes our counts with h heads and t tails.
e Posterior increments counts by observed nj, and n;.
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Sidebar: Conjugate Priors

@ Interesting that posterior is in same distribution family as prior.
@ Let 7t be a family of prior distributions on ©.
@ Let P parametric family of distributions with parameter space ©.

Definition
A family of distributions 7t is conjugate to parametric model P if for any prior in 7t, the
posterior is always in 7t.

@ The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
@ The family of all probability distributions is conjugate to any parametric model. [Trivially]
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Example: Coin Flipping - Concrete Example

@ Suppose we have a coin, possibly biased (parametric probability model):

p(Heads | 0) = 6.
@ Parameter space 6 € © = [0, 1].
@ Prior distribution: 6 ~ Beta(2,2).
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Example: Coin Flipping

o Next, we gather some data D ={H,H, T, T,T,T,T,H,..., T}

@ Heads: 75 TaiIS' 60
o éMLE m ~ 0 556
@ Posterior distribution: 0 |D ~ Beta(77,62):

Posterior: Beta(77,62)

75-
D 5.0~
=

25-
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Bayesian Point Estimates

@ So we have posterior 6| D...
@ But we want a point estimate 6 for 0.
@ Common options:

e posterior mean 6=E[0|D]
e maximum a posteriori (MAP) estimate 0 = argmaxg p(6 | D)
o Note: this is the mode of the posterior distribution
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What else can we do with a posterior?

o Look at it.
e Extract “credible set” for © (Bayesian version of a confidence interval).
o e.g. Interval [a, b] is a 95% credible set if

P(6 la b]| D) >0.95

@ The most “Bayesian” approach is Bayesian decision theory:

o Choose a loss function.
e Find action minimizing expected risk w.r.t. posterior
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Bayesian Decision Theory
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Bayesian Decision Theory

@ Ingredients:

Parameter space O.

Prior: Distribution p(8) on ©.
Action space A.

Loss function: {: A x© — R.

@ The posterior risk of an action a€ A is
r(a) = E[(0,a)]|D]
_ Je(e,a)p(e D) do.

e It's the expected loss under the posterior.

@ A Bayes action a* is an action that minimizes posterior risk:

r(a®) = anélpt r(a)
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Bayesian Point Estimation

@ General Setup:

o Data D generated by p(y | 6), for unknown 6 € ©.
e Want to produce a point estimate for 0.

@ Choose the following:
e Prior p(6) on ® =R.
A~ A\ 2
o Loss {(0,0) = (e—e)

e Find action 6 € © that minimizes posterior risk:

r(0) = E[(e—é)ﬂ@}
2
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Bayesian Point Estimation: Square Loss

e Find action 6 € © that minimizes posterior risk
N N 2
r(0) = J(e-e) p(0]D)de.
o Differentiate:

dr(6

—

_ —J2(6—é>p(9|®)d9

Q
D>

— _zjep(e|®)de+2éjp(e|®)de

-
=1

= —2J6p(9|@)d9+2é
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Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

dr() J A
— =—2|0p(0]|D)do+26.
o p( D)
e First order condition d:j(é?) =0 gives
6 = Jep(9|®)d9
= E[0]D]

@ Bayes action for square loss is the posterior mean.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 March 20, 2018 33/38



Bayesian Point Estimation: Absolute Loss

o Loss: {(6,0) = ‘6—@‘

e Bayes action for absolute loss is the posterior median.

e That is, the median of the distribution p(8 | D).
e Show with approach similar to what was used in Homework #1.
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Bayesian Point Estimation: Zero-One Loss

Suppose © is discrete (e.g. © = {english, french})
Zero-one loss: £(0,0) =1(0 £0)
o Posterior risk:

r(@) = E[ue¢éuiﬂ

- P(G#él@)
- 1—IP’<6:@|D)
= 1-p(0|D)

Bayes action is

6 = argmaxp(0| D)
0€O
e This 6 is called the maximum a posteriori (MAP) estimate.
@ The MAP estimate is the mode of the posterior distribution.
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Summary
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Recap and Interpretation

Prior represents belief about 0 before observing data D.
Posterior represents the rationally “updated” beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.
In the Bayesian approach,

No issue of “choosing a procedure” or justifying an estimator.
Only choices are

o family of distributions, indexed by ©, and the

@ prior distribution on ©

For decision making, need a loss function.
Everything after that is computation.
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The Bayesian Method

@ Define the model:

o Choose a parametric family of densities:
{p(D6)6 €O}

o Choose a distribution p(0) on ©, called the prior distribution.
@ After observing D, compute the posterior distribution p(6 | D).
© Choose action based on p(6 | D).
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