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Parametric Family of Conditional Densities

A parametric family of conditional densities is a set

{p(y | x ,θ) : θ ∈Θ} ,

where p(y | x ,θ) is a density on outcome space Y for each x in input space X, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for a treatment of classical or Bayesian statistics.
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Density vs Mass Functions

In this lecture, whenever we say “density”, we could replace it with “mass function.”

Corresponding integrals would be replaced by summations.

(In more advanced, measure-theoretic treatments, they are each considered densities w.r.t.
different base measures.)
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Parameters

A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

Assume that p(y | x ,θ) governs the world we are observing, for some θ ∈Θ.
If we knew the right θ ∈Θ, there would be no need for statistics.
Instead of θ, we have data D... how is it generated?
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The Data: Assumptions So Far in this Course

Our usual setup is that (x ,y) pairs are drawn i.i.d. from PX×Y.
How have we used this assumption so far?

ties validation performance to test performance
ties test performance to performance on new data when deployed
motivates empirical risk minimization

The large majority of things we’ve learned about ridge/lasso/elastic-net regression,
optimization, SVMs, and kernel methods are true for arbitrary training data sets
D : (x1,y1) , . . . ,(xn,yn) ∈ X×Y.

i.e. D could be created by hand, by an adversary, or randomly.

We rely on the i.i.d. PX×Y assumption when it comes to generalization.
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The Data: Conditional Probability Modeling

To get generalization, we’ll still need our usual i.i.d. PX×Y assumption.

This time, for developing the model, we’ll make some assumptions about the training
data...

We do not need any assumptions on x ’s .
They can be random, chosen by hand, or chosen adversarially.

For each input xi ,
we observe yi sampled randomly from p(y | xi ,θ), for some unknown θ ∈Θ.

We assume the outcomes y1, . . . ,yn are independent.
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Likelihood Function

Data: D= (y1, . . . , ,yn)

The probability density for our data D is

p(D | x1, . . . ,xn,θ) =

n∏
i=1

p(yi | xi ,θ).

For fixed D, the function θ 7→ p(D | x ,θ) is the likelihood function:

LD(θ)

The maximum likelihood estimator (MLE) for θ in the model {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).
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Example: Gaussian Linear Regression

Input space X= Rd Outcome space Y= R
Family of conditional probability densities:

y | x ,w ∼ N
(
wT x ,σ2) ,

for some known σ2 > 0.
Parameter space? Rd .
Data: D= (y1, . . . , ,yn)

Assume yi ’s are independent.
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Gaussian Likelihood and MLE

The likelihood of w ∈ Rd for the data D is given by the likelihood function:

LD(w) =

n∏
i=1

p(yi | xi ,w) by conditional independence.

=

n∏
i=1

[
1

σ
√
2π

exp

(
−
(yi −wT xi )

2

2σ2

)]
You should see in your head1 that the MLE is

ŵMLE = argmax
w∈Rd

LD(w)

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2.

1See https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.
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Bayesian Conditional Probability Models
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Bayesian Conditional Models

Input space X= Rd Outcome space Y= R

Two components to Bayesian conditional model:
A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

A prior distribution for θ ∈Θ.

Prior distribution: p(θ) on θ ∈Θ
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The Posterior Distribution

The posterior distribution for θ is

p(θ | D,x1, . . . ,xn) ∝ p(D | θ,x1, . . . ,xn)p(θ)

= LD(θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior
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Gaussian Example: Priors and Posteriors

Choose a Gaussian prior distribution p(w) on Rd :

w ∼ N (0,Σ0)

for some covariance matrix Σ0 � 0 (i.e. Σ0 is spd).
Posterior distribution

p(w | D,x1, . . . ,xn) = p(w | D,x1, . . . ,xn)

∝ LD(w)p(w)

=

n∏
i=1

[
1

σ
√
2π

exp

(
−
(yi −wT xi )

2

2σ2

)]
(likelihood)

× |2πΣ0|
−1/2 exp

(
−
1
2
wTΣ−1

0 w

)
(prior)
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The Hypothesis Space

We have a parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

For fixed θ ∈Θ, p(y | x ,θ) is a conditional density, but
For fixed θ ∈Θ, x 7→ p(y | x ,θ) is also a prediction function:

maps any input x ∈ X to a density on Y

These prediction functions are usually called predictive distribution functions.

As a set of prediction functions, {p(y | x ,θ) : θ ∈Θ} is a hypothesis space.
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Bayesian Distributions on Hypothesis Space

In Bayesian statistics we have two distributions on Θ:
the prior distribution p(θ)
the posterior distribution p(θ | D,x1, . . . ,xn).

Each of these may be thought of as a distribution on the hypothesis space

{p(y | x ,θ) : θ ∈Θ} .
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