
Neural Networks

David S. Rosenberg

New York University

April 17, 2018

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 1 / 40

Contents

1 Neural Networks Overview

2 Example: Regression with Multilayer Perceptrons (MLPs)

3 Approximation Properties of Multilayer Perceptrons

4 Review: Multinomial Logistic Regression

5 Standard MLP for Multiclass

6 Neural Networks for Features

7 Multiple Output Networks

8 Neural Networks: When and why?

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 2 / 40

Neural Networks Overview

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 3 / 40

Linear Prediction Functions

Linear prediction functions: SVM, ridge regression, Lasso
Generate the feature vector φ(x) by hand.
Learn parameter vector w from data.

So for w ∈ R3,
score= wTφ(x)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 4 / 40

Basic Neural Network (Multilayer Perceptron)

Add an extra layer with hidden nodes h1 and h2:

For parameter vector vi ∈ R3, define

hi = σ
(
vTi φ(x)

)
,

where σ is a nonlinear activation function. (We’ll come back to this.)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 5 / 40

Basic Neural Network (Multilayer Perceptron)

For parameters w1,w2 ∈ R, score is just

score = w1h1+w2h2

= w1σ(v
T
1 φ(x))+w2σ

(
vT2 φ(x)

)
This is the basic recipe.

We can add more hidden nodes.
We can add more hidden layers. (> 1 hidden layer is a “deep network”.)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 6 / 40

Activation Functions

The hyperbolic tangent is a common activation function these days:

σ(x) = tanh(x) .

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 7 / 40

Activation Functions

More recently, the rectified linear function has been very popular:

σ(x) =max(0,x).

“ReLU” is much faster to calculate, and to calculate its derivatives.
Also often seems to work better.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 8 / 40

Example: Regression with Multilayer Perceptrons (MLPs)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 9 / 40

MLP Regression

Input space: X= R
Action Space / Output space: A= Y= R
Hypothesis space: MLPs with a single 3-node hidden layer:

f (x) = w0+w1h1(x)+w2h2(x)+w3h3(x),

where
hi (x) = σ(vix +bi) for i = 1,2,3,

for some fixed nonlinear “activation function” σ : R→ R.

What are the parameters we need to fit?

b1,b2,b3,v1,v2,v3,w0,w1,w2,w3 ∈ R

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 10 / 40

Multilayer Perceptron for f : R→ R

MLP with one hidden layer; σ typically tanh or RELU; x ,h1,h2,h3,ŷ ∈ R.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 11 / 40

Hidden Layer as Feature/Basis Functions

Can think of hi = hi (x) = σ(vix +bi) as a feature of x .
Learned by fitting the parameters vi and bi .

Here are some hi (x)’s for σ= tanh and randomly chosen vi and bi :

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 12 / 40

Samples from the Hypothesis Space

Choosing 6 sets of random settings for b1,b2,b3,v1,v2,v3,w0,w1,w2,w3 ∈ R, we get the
following score functions:

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 13 / 40

How to choose the best hypothesis?

As usual, choose our prediction function using empirical risk minimization.

Our hypothesis space is parameterized by
θ= (b1,b2,b3,v1,v2,v3,w0,w1,w2,w3) ∈Θ= R10.

For a training set (x1,y1), . . . ,(xn,yn), find

θ̂= argmin
θ∈R10

1
n

n∑
i=1

(fθ(xi)− yi)
2 .

Do we have the tools to find θ̂?

Not quite, but close enough...

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 14 / 40

Gradient Methods for MLPs

Note that

f (x) = w0+

3∑
i=1

wihi (x)

= w0+

3∑
i=1

wi tanh(vix +bi)

is differentiable w.r.t. all parameters.

We can use gradient-based methods as usual.

However, the objective function is not convex w.r.t. parameters.

So we can only hope to converge to a local minimum.

In practice, this seems to be good enough.
David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 15 / 40

Approximation Properties of Multilayer Perceptrons

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 16 / 40

Approximation Ability: f (x) = x2

3 hidden units; tanh activation functions
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 17 / 40

Approximation Ability: f (x) = sin(x)

3 hidden units; logistic activation function
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 18 / 40

Approximation Ability: f (x) = |x |

3 hidden units; logistic activation functions
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 19 / 40

Approximation Ability: f (x) = 1(x > 0)

3 hidden units; logistic activation function
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 20 / 40

Universal Approximation Theorems

Leshno and Schocken (1991) showed:
A neural network with one [possibly huge] hidden layer can uniformly approximate any
continuous function on a compact set iff the activation function is not a polynomial (i.e.
tanh, logistic, and ReLU all work, as do sin,cos, exp, etc.).

In more words:
Let ϕ(·) be any non-polynomial function (an activation function).
Let f : K → R be any continuous function on a compact set K ⊂ Rm.

Then ∀ε > 0, there exists an integer N (the number of hidden units), and parameters
vi ,bi ∈ R and wi ∈ Rm such that the function

F (x) =
N∑
i=1

viϕ(w
T
i x +bi)

satisfies |F (x)− f (x)|< ε for all x ∈ K .

Leshno & Schocken note that this doesn’t work without the bias term bi (they call it
the threshold term). (e.g. consider ϕ= sin: then we always have F (−x) = −F (x))

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 21 / 40

Review: Multinomial Logistic Regression

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 22 / 40

Recall: Multinomial Logistic Regression

Setting: X= Rd , Y= {1, . . . ,k}

For each x , we want to produce a distribution on k classes.

Such a distribution is called a “multinoulli” or “categorical” distribution.

Represent categorical distribution by probability vector θ= (θ1, . . . ,θk) ∈ Rk , where∑k
y=1θy = 1 and θy > 0 for y ∈ {1, . . . ,k}.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 23 / 40

Multinomial Logistic Regression

From each x , we compute a linear score function for each class:

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk

We need to map this Rk vector into a probability vector θ.
The softmax function maps scores s = (s1, . . . ,sk) ∈ Rk to a categorical distribution:

(s1, . . . ,sk) 7→ θ= Softmax(s1, . . . ,sk) =

(
exp(s1)∑k
i=1 exp(si)

, . . . ,
exp(sk)∑k
i=1 exp(si)

)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 24 / 40

Multinomial Logistic Regression: Learning

Let y ∈ {1, . . . ,k} be an index denoting a class.
Then predicted probability for class y given x is

p̂(y | x) = Softmax(〈w1,x〉 , . . . ,〈wk ,x〉)y ,

where the y subscript indicates taking the y ’th entry of the vector produced Softmax.
Learning: Maximize the log-likelihood of training data

argmax
w1,...,wk∈Rd

n∑
i=1

log
[
Softmax(〈w1,xi 〉 , . . . ,〈wk ,xi 〉)yi

]
.

This objective function is concave in w ’s and straightforward to optimize.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 25 / 40

Standard MLP for Multiclass

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 26 / 40

Nonlinear Generalization of Multinomial Logistic Regression

Key change: Rather than k linear score functions

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk ,

use nonlinear score functions:

x 7→ (f1(x), . . . , fk(x)) ∈ Rk ,

Then predicted probability for class y ∈ {1, . . . ,k} given x is

p̂(y | x) = Softmax(f1(x), . . . , fk(x))y .

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 27 / 40

Nonlinear Generalization of Multinomial Logistic Regression

Learning: Maximize the log-likelihood of training data

argmax
f1,...,fk

n∑
i=1

log
[
Softmax(f1(x), . . . , fk(x))yi

]
.

We could use gradient boosting to get fi ’s as ensembles of regression trees.
Today we’ll learn to use a multilayer perceptron for f : Rd → Rk .
Unfortunately, this objective function will not be concave or convex.
But we can still use gradient methods to find a good local optimum.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 28 / 40

Multilayer Perceptron: Standard Recipe

Input space: X= Rd Action space A= Rk (for k-class classification).
Let σ : R→ R be a non-polynomial activation function (e.g. tanh or ReLU).
Let’s take all hidden layers to have m units.
First hidden layer is given by

h(1)(x) = σ
(
W (1)x +b(1)

)
,

for parameters W (1) ∈ Rm×d and b ∈ Rm, and where σ(·) is applied to each entry of its
argument.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 29 / 40

Multilayer Perceptron: Standard Recipe

Each subsequent hidden layer takes the output o ∈ Rm of previous layer and produces

h(j)(o) = σ
(
W (j)o+b(j)

)
, for j = 1, . . . ,D

where W (j) ∈ Rm×m, b(j) ∈ Rm, and D is the number of hidden layers.
Last layer is an affine mapping:

a(o) =W (D+1)o+b(D+1),

where W (D+1) ∈ Rk×m and b(D+1) ∈ Rk .

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 30 / 40

Multilayer Perceptron: Standard Recipe

So the full neural network function is given by the composition of layers:

f (x) =
(
a◦h(D) ◦ · · · ◦h(1)

)
(x)

This gives us the k score functions we need.
To train this we maximize the conditional log-likelihood for the training data:

J(θ) =
1
n

n∑
i=1

log [Softmax(f (xi))yi] ,

where θ=
(
W (1), . . . ,W (D+1),b(1), . . . ,b(D+1)

)
.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 31 / 40

Neural Networks for Features

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 32 / 40

OverFeat: Features

OverFeat is a neural network for image classification
Trained on the huge ImageNet dataset
Lots of computing resources used for training the network.

All those hidden layers of the network are very valuable features.
Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”
Showed that using features from OverFeat makes it easy to achieve state-of-the-art
performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 33 / 40

https://github.com/sermanet/OverFeat

Multiple Output Networks

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 34 / 40

Multiple Output Neural Networks

Very easy to add extra outputs to neural network structure.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 35 / 40

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Multitask Learning

Suppose X= {Natural Images}.
We have two tasks:

Does the image have a cat?
Does the image have a dog?

Can have one output for each task.
Seems plausible that basic pixel features would be shared by tasks.
Learn them on the same neural network – benefit both tasks.
Objective function must combine losses from both predictions, e.g. by averaging.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 36 / 40

Single Task with “Extra Tasks”

Only one task we’re interested in.
Gather data from related tasks.
Train them along with the task you’re interested in.
No related tasks? Another trick:

Choose any input feature.
Change it’s value to zero.
Make the prediction problem to predict the value of that feature.
Can help make model more robust (not depending too heavily on any single input).

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 37 / 40

Neural Networks: When and why?

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 38 / 40

Neural Networks Benefit from Big Data

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 39 / 40

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Big Data Requires Big Resources

Best results always involve GPU processing.
Often on large networks.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 17, 2018 40 / 40

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

	Neural Networks Overview
	Example: Regression with Multilayer Perceptrons (MLPs)
	Approximation Properties of Multilayer Perceptrons
	Review: Multinomial Logistic Regression
	Standard MLP for Multiclass
	Neural Networks for Features
	Multiple Output Networks
	Neural Networks: When and why?

