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Probabilistic Model for Clustering

Let's consider the following generative model (i.e. a way to generate data).

Suppose

@ There are k clusters (or “mixture components”).
@ We have a probability density for each cluster.

Generate a point as follows

@ Choose a random cluster z €{1,2, ..., k}.
@ Choose a point from the distribution for cluster z.

Data generated in this way is said to have a mixture distribution.
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Gaussian Mixture Model (k = 3)

@ Choose z €{1,2,3} with p(1) = p(2) = p(3) = 3.
@ Choose x| z~N (X | pz, X).

Mixture of Three Gaussians
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Gaussian Mixture Model Parameters (k Components)

Cluster probabilities : = (71,...,70%)
Cluster means: w=(uy,..., Lk
Cluster covariance matrices: =(Z1,... %)

Mixture of Three Gaussians
.
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For now, suppose all these parameters are known.
We'll discuss how to learn or estimate them later.
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Gaussian Mixture Model: Joint Distribution

o Factorize the joint density:

plx,z) = p(z)p(x|2z)
= T,N(x|usZx,)

7, is probability of choosing cluster z.
x | z has distribution N(p,, Z,).

z corresponding to x is the true cluster assignment.

@ Suppose we know the model parameters 7, 1,, Z.

@ Then we can easily evaluate the joint density p(x, z).
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Latent Variable Model

o We observe x.
e We don't observe z (the cluster assignment).
@ Cluster assignment z is called a hidden variable or latent variable.

Definition
A latent variable model is a probability model for which certain variables are never observed. J

e.g. The Gaussian mixture model is a latent variable model.
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The GMM “Inference” Problem

We observe x. We want to know its cluster assignment z.

The conditional probability for cluster z given x is

p(z[x) = p(x,z)/p(x)

The conditional distribution is a soft assignment to clusters.

A hard assignment is

z* = argmax p(z | x).
ze{1,...,k}

@ So if we know the model parameters, clustering is trival.
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Mixture Models
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General Mixture Models: Generative Construction

(]

Let S be a set of k probability distributions (“mixture components”).

Let 7t = (7y,...,7x) be a distribution on {1, ..., k} (“mixture weights")

Suppose we generate x with the following procedure:

@ Choose a distribution randomly from S according to 7.
@ Sample x from the chosen distribution.

Then we say x has a mixture distribution.
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Mixture Densities

Suppose we have a mixture distribution with

e mixture components represented as densities ps,..., pk, and
e mixture weights 7t = (7y,...,7,) , then

the corresponding probability density for x is

p
p(x) = Zﬂipi(x)-
i—1

Note that p is a convex combination of the mixture component densities.

p(x) is called a mixture density.

Conversely, if x has a density of this form, then x has a mixture distribution.
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Gaussian Mixture Model (GMM): Marginal Distribution

For example:

e The marginal distribution for a single observation x in a GMM is
k
px) = D plx2)
z=1

k
= ZTEZN(X| Mz:zz)
z=1
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Learning in Gaussian Mixture Models J
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The GMM “Learning” Problem

o Given data xq,...,x, drawn from a GMM,
e Estimate the parameters:
Cluster probabilities : = (719, ...,70)
Cluster means:: w= (..., 1)
Cluster covariance matrices: T =(Xq1,...Z4)
@ Once we have the parameters, we're done.
@ Just do “inference” to get cluster assignments.
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Estimating/Learning the Gaussian Mixture Model
@ One approach to learning is maximum likelihood

o find parameter values with highest likelihood for the observed data.

@ The model likelihood for D = (xq,...,x,) sampled iid from a GMM is

LmwD) = []plx)
i=1

n k
= I3 ANl 5.

i=1z=1

@ As usual, we'll take our objective function to be the log of this:

JT[LLZ Zlog{zﬂz XI|HZ z)}
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Review: Estimating a Gaussian Distribution

@ Recall that the density for x ~ N (u, X) is

p(x 1 E) = exp (—;(x— WTE (x— u))

|27t |

@ And the log-density is
1 1 Ty—1
logp(x |, )= ) log |27tZ| — E(X_ w I (x—p)

@ To estimate u and X from a sample xq,...,x, i.i.d. N(u, L), we'll maximize the log joint
density:

n

- n 1 Ty—1
_leogp(x,- | I) = —2|0g|2ﬂ2|—2zl(X;—u) I Hx—p)
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Review: Estimating a Gaussian Distribution

@ To estimate n and X from a sample xq,..., Xxp ii.d. N, X), we'll maximize the log joint
density:
n

- n 1 Ty—1
=leogp(x|u,2)=—2|0g|2n2|—22(x,-—u) £ x—w)

i=1
o This is a solid exercise in vector and matrix differentiation. Find {i and & satisfying
Vud(w,2)=0 VsJ(uw,X)=0

o We get a closed form solution:
1 n
Ave = ;in
mie = *Z —fimee) " (i — fimLe)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 18 /35



Properties of the GMM Log-Likelihood

e GMM log-likelihood:

J(m o, X Z'og{z\/ﬁ <—1X w75 (X—Hz)>}

@ Let's compare to the log-likelihood for a single Gaussian:

n

n 1 _
S T) = —7loglenZl— 2} (x—w) T (xi—p)
i=1

@ For a single Gaussian, the log cancels the exp in the Gaussian density.
e = Things simplify a lot.

@ For the GMM, the sum inside the log prevents this cancellation.
o — Expression more complicated. No closed form expression for MLE.
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Issues with MLE for GMM J
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities : = (7m,...,70%)
Cluster means: W= (..., 1)
Cluster covariance matrices: L =(Z,...%)

that are at a local minimum.
@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
o We'll get the same likelihood. How many such equivalent settings are there?
@ Assuming all clusters are distinct, there are k! equivalent solutions.

@ Not a problem per se, but something to be aware of.
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Singularities for GMM

@ Consider the following GMM for 7 data points:

p(z)

T

o Let 02 be the variance of the skinny component.
e What happens to the likelihood as 02 — 07?

@ In practice, we end up in local minima that do not have this problem.

o Or keep restarting optimization until we do.

@ Bayesian approach or regularization will also solve the problem.

From Bishop's Pattern recognition and machine learning, Figure 9.7.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
J(mw X)) = —Zlog{ZﬂzN(x,- | uz,Zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ Each matrix Z1,...,Z, has to be positive semidefinite.
@ How to maintain that constraint?

o Rewrite L; = M,-M,.T, where M; is an unconstrained matrix.
e Then Z; is positive semidefinite.

@ Even then, pure gradient-based methods have trouble.!

1See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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The EM Algorithm for GMM J
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MLE for Gaussian Model

@ Let's start by considering the MLE for the Gaussian model.
@ For data D ={x1,...,x,}, the log likelihood is given by

n

Z nd n 1 Je1
leogN(x;|u,2)=—2log(zm—zlog|2|—2_zl(x,-—u)z (xi — ).

@ With some calculus, we find that the MLE parameters are

1
UMLE = — Xi

n“

i=1

1 & -
IMLE = - (xi — umee) (X — umLe)

@ For GMM, If we knew the cluster assignment z; for each x;,
e we could compute the MLEs for each cluster.
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Estimating a Fully-Observed GMM

@ Suppose we observe (x1,21),...,(Xn 2,) i.i.d. from GMM p(x, z).
@ Them find MLE is easy:

#lz) = 2=
n
R 1
Hz = " E Xi
iizi=z
o 1 N AT
i, = ,T E (XI_PLZ)(XI_HZ) .
z .
i:zi=z

@ In the EM algorithm we will modify the equations to handle our evolving soft
assignments, which we will call responsibilities.
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Cluster Responsibilities: Some New Notation

Denote the probability that observed value x; comes from cluster j by

Yi=plz=jl1x=x).

The responsibility that cluster j takes for observation x;.

(]

Computationally,

Y, = plz=jlx).
(z=Jj,x)/p(xi)
N (x; |y, Zj)

Z/c(zl TN (X | He, o)

T T

The vector (y,l . yf‘) is exactly the soft assignment for x;.

Let nc =) ;¢ be the “number” of points “soft assigned” to cluster c.
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EM Algorithm for GMM: Overview

o If we know i, X;,7t; for all clusters j, then easy to find
Vi=plz=jlx)

o If we know the (soft) assignments, we can easily find estimates for 7, Z, .

@ Repeatedly alternate these two steps.
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EM Algorithm for GMM: Overview

© |Initialize parameters p, Z, 7t (e.g. using k-means).
@ "E step”. Evaluate the responsibilities using current parameters:

Y-

N (% | w, L))
Zf_f:l TN (X | pe, Ze)

fori=1,...,nand j=1,... k.
© "M step”. Re-estimate the parameters using responsibilities:

n
new __ 1 Co.
He = YiXi
c =
i=1
n
ynew 1 c new newy T
= = ) i i — ) (6 — ™)
Ne 2
i=1
n
new c
T = —
c ’
n

@ Repeat from Step 2, until log-likelihood converges.
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EM for GMM

o Initialization

2
0
o .o‘
-2 1
-2 0 (a) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ First soft assignment:

2
0
o .0‘
-2 o 8°
-2 0 (b) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o After 5 rounds of EM:

-2 0 (e) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

-2

o After 20 rounds of EM:

L=20 . o.:é;.;
:o @o;‘
e
o;’& o O o
.@)o~
13
-2 0 )

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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Relation to k-Means

EM for GMM seems a little like k-means.

In fact, k-means is a limiting case of a restricted version of GMM.

First, fix each cluster covariance matrix to be o2/.

(]

o (This is the restriction: covariance matrices are fixed, and not iteratively estimated.)

As we take 02 — 0, the update equations converge to doing k-means.

If you do a quick experiment yourself, you'll find

o Soft assignments converge to hard assignments.
e Has to do with the tail behavior (exponential decay) of Gaussian.
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