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Latent Variable Models
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General Latent Variable Model

Two sets of random variables: z and x .
z consists of unobserved hidden variables.
x consists of observed variables.
Joint probability model parameterized by θ ∈Θ:

p(x ,z | θ)

Definition
A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 4 / 52



Complete and Incomplete Data

Suppose we observe some data (x1, . . . ,xn).
To simplify notation, take x to represent the entire dataset

x = (x1, . . . ,xn) ,

and z to represent the corresponding unobserved variables

z = (z1, . . . ,zn) .

An observation of x is called an incomplete data set.
An observation (x ,z) is called a complete data set.
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Our Objectives

Learning problem: Given incomplete dataset x , find MLE

θ̂= argmax
θ

p(x | θ).

Inference problem: Given x , find conditional distribution over z :

p (z | x ,θ) .

For Gaussian mixture model, learning is hard, inference is easy.
For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

Note that
argmax
θ

p(x | θ) = argmax
θ

[logp(x | θ)] .

Often easier to work with this “ log-likelihood”.
We often call p(x) the marginal likelihood,

because it is p(x ,z) with z “marginalized out”:

p(x) =
∑
z

p(x ,z)

We often call p(x ,z) the joint. (for “joint distribution”)
Similarly, logp(x) is the marginal log-likelihood.
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EM Algorithm (and Variational Methods) – The Big Picture
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Big Picture Idea

Want to find θ by maximizing the likelihood of the observed data x :

θ̂= argmax
θ∈Θ

[logp(x | θ)]

Unfortunately this may be hard to do directly.

Approach: Generate a family of lower bounds on θ 7→ logp(x | θ).

For every q ∈ Q, we will have a lower bound:

logp(x | θ)> Lq(θ) ∀θ ∈Θ

We will try to find the maximum over all lower bounds:

θ̂= argmax
θ∈Θ

[
sup
q∈Q

Lq(θ)

]
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The Marginal Log-Likelihood Function
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The Maximum Likelihood Estimator
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Lower Bounds on Marginal Log-Likelihood
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Supremum over Lower Bounds is a Lower Bound
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Parameter Estimate: Max over all lower bounds
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The Expected Complete Data Log-Likelihood

Marginal log-likelihood is hard to optimize:

max
θ

logp(x | θ)

Typically the complete data log-likelihood is easy to optimize:

max
θ

logp(x ,z | θ)

What if we had a distribution q(z) for the latent variables z?
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The Expected Complete Data Log-Likelihood

Suppose we have a distribution q(z) on latent variable z .
Then maximize the expected complete data log-likelihood:

max
θ

∑
z

q(z) logp(x ,z | θ)

If q puts lots of weight on actual z , this could be a good approximation to MLE
EM assumes this maximization is relatively easy.
(This is true for GMM.)
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Math Prerequisites
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Jensen’s Inequality

Theorem (Jensen’s Inequality)

If f : R→ R is a convex function, and x is a random variable, then

Ef (x)> f (Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).

e.g. f (x) = x2 is convex. So Ex2 > (Ex)2. Thus

Var(x) = Ex2−(Ex)2 > 0.
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Kullback-Leibler Divergence

Let p(x) and q(x) be probability mass functions (PMFs) on X.
How can we measure how “different” p and q are?

The Kullback-Leibler or “KL” Divergence is defined by

KL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

(Assumes q(x) = 0 implies p(x) = 0.)

Can also write this as

KL(p‖q) = Ex∼p log
p(x)

q(x)
.
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Gibbs Inequality (KL(p‖q)> 0 and KL(p‖p) = 0)

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on X. Then

KL(p‖q)> 0,

with equality iff p(x) = q(x) for all x ∈ X.

KL divergence measures the “distance” between distributions.

Note:

KL divergence not a metric.
KL divergence is not symmetric.
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Gibbs Inequality: Proof

KL(p‖q) = Ep

[
− log

(
q(x)

p(x)

)]
> − log

[
Ep

(
q(x)

p(x)

)]
(Jensen’s)

= − log

 ∑
{x |p(x)>0}

p(x)
q(x)

p(x)


= − log

[∑
x∈X

q(x)

]
= − log1= 0.

Since − log is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which
implies q = p .
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The ELBO: Family of Lower Bounds on logp(x | θ)
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Lower Bound for Marginal Log-Likelihood

Let q(z) be any PMF on Z, the support of z :

logp(x | θ) = log

[∑
z

p(x ,z | θ)

]

= log

[∑
z

q(z)

(
p(x ,z | θ)

q(z)

)]
(log of an expectation)

>
∑
z

q(z) log

(
p(x ,z | θ)

q(z)

)
︸ ︷︷ ︸

L(q,θ)

(expectation of log)

Inequality is by Jensen’s, by concavity of the log.

This inequality is the basis for “variational methods” , of which EM is a basic example.
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The ELBO

For any PMF q(z), we have a lower bound on the marginal log-likelihood

logp(x | θ)>
∑
z

q(z) log

(
p(x ,z | θ)

q(z)

)
︸ ︷︷ ︸

L(q,θ)

Marginal log likelihood logp(x | θ) also called the evidence.

L(q,θ) is the evidence lower bound, or “ELBO”.

In EM algorithm (and variational methods more generally), we maximize L(q,θ) over q and θ.
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MLE, EM, and the ELBO

For any PMF q(z), we have a lower bound on the marginal log-likelihood

logp(x | θ)> L(q,θ).

The MLE is defined as a maximum over θ:

θ̂MLE = argmax
θ

[logp(x | θ)] .

In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

θ̂EM ≈ argmax
θ

[
max
q

L(q,θ)

]

In EM algorithm, q ranges over all distributions on z .
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A Family of Lower Bounds

For each q, we get a lower bound function: logp(x | θ)> L(q,θ) ∀θ.
Two lower bounds (blue and green curves), as functions of θ:

Ideally, we’d find the maximum of the red curve. Maximum of green is close.
From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM: Coordinate Ascent on Lower Bound

Choose sequence of q’s and θ’s by “coordinate ascent” on L(q,θ).
EM Algorithm (high level):

1 Choose initial θold.
2 Let q∗ = argmaxqL(q,θ

old)
3 Let θnew = argmaxθL(q

∗,θold).
4 Go to step 2, until converged.

Will show: p(x | θnew)> p(x | θold)

Get sequence of θ’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

1 Start at θold.
2 Find q giving best lower bound at θold =⇒ L(q,θ).
3 θnew = argmaxθL(q,θ).

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM: Next Steps

In EM algorithm, we need to repeatedly solve the following steps:
argmaxqL(q,θ), for a given θ, and
argmaxθL(q,θ), for a given q.

We now give two re-expressions of ELBO L(q,θ) that make these easy to compute...
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ELBO in Terms of KL Divergence and Entropy

Let’s investigate the lower bound:

L(q,θ) =
∑
z

q(z) log

(
p(x ,z | θ)

q(z)

)
=
∑
z

q(z) log

(
p(z | x ,θ)p(x | θ)

q(z)

)
=
∑
z

q(z) log

(
p(z | x ,θ)

q(z)

)
+
∑
z

q(z) logp(x | θ)

= −KL[q(z),p(z | x ,θ)]+ logp(x | θ)

Amazing! We get back an equality for the marginal likelihood:

logp(x | θ) = L(q,θ)+KL[q(z),p(z | x ,θ)]
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Maximizing over q for fixed θ.

Find q maximizing

L(q,θ) = −KL[q(z),p(z | x ,θ)]+ logp(x | θ)︸ ︷︷ ︸
no q here

Recall KL(p‖q)> 0, and KL(p‖p) = 0.
Best q is q∗(z) = p(z | x ,θ) and

L(q∗,θ) = −KL[p(z | x ,θ),p(z | x ,θ)]︸ ︷︷ ︸
=0

+ logp(x | θ)

Summary:
logp(x | θ) = sup

q
L(q,θ) ∀θ

For any θ, sup is attained at q(z) = p(z | x ,θ).
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z
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Maximum of ELBO is MLE

Suppose we find a maximum of L(q,θ) over all distributions q on z and all θ ∈Θ:

L(q∗,θ∗) = sup
θ

sup
q

L(q,θ).

(where of course q∗(z) = p(z | x ,θ∗).)

Claim: θ∗ is a maximizes logp(x | θ).
Proof: Trivial, since logp(x | θ) = supqL(q,θ).
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Summary: Maximizing over q for fixed θ= θold.

At given θ= θold, want to find q giving best lower bound.
Answer is q∗ = p(z | x ,θold).
This gives lower bound L(q∗,θ) that is tight (equality) at θold

logp(x | θold) = L(q∗,θold) (tangent at θold).

And elsewhere, of course, L(q∗,θ) is just a lower bound:

logp(x | θ)> L(q∗,θ) ∀θ
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Tight lower bound for any chosen θ

For θold, take q(z) = p(z | x ,θold). Then
1 logp(x | θold) = L(q,θold). [Lower bound is tight at θold.]
2 logp(x | θ)> L(q,θ) ∀θ. [Global lower bound].

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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Maximizing over θ for fixed q

Consider maximizing the lower bound L(q,θ):

L(q,θ) =
∑
z

q(z) log

(
p(x ,z | θ)

q(z)

)
=

∑
z

q(z) logp(x ,z | θ)︸ ︷︷ ︸
E[complete data log-likelihood]

−
∑
z

q(z) logq(z)︸ ︷︷ ︸
no θ here

Maximizing L(q,θ) equivalent to maximizing E [complete data log-likelihood] (for fixed q).
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General EM Algorithm

1 Choose initial θold.
2 Expectation Step

Let q∗(z) = p(z | x ,θold). [q∗ gives best lower bound at θold]
Let

J(θ) := L(q∗,θ) =
∑
z

q∗(z) log

(
p(x ,z | θ)

q∗(z)

)
︸ ︷︷ ︸
expectation w.r.t. z∼q∗(z)

3 Maximization Step
θnew = argmax

θ
J(θ).

[Equivalent to maximizing expected complete log-likelihood.]
4 Go to step 2, until converged.
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Does EM Work?
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EM Gives Monotonically Increasing Likelihood: By Picture

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM Gives Monotonically Increasing Likelihood: By Math

1 Start at θold.
2 Choose q∗(z) = argmaxqL(q,θ

old). We’ve shown

logp(x | θold) = L(q∗,θold)

3 Choose θnew = argmaxθL(q
∗,θ). So

L(q∗,θnew) > L(q∗,θold).

Putting it together, we get

logp(x | θnew) > L(q∗,θnew) L is a lower bound
> L(q∗,θold) By definition of θnew

= logp(x | θold) Bound is tight at θold.
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Convergence of EM

Let θn be value of EM algorithm after n steps.
Define “transition function” M(·) such that θn+1 =M(θn).
Suppose log-likelihood function `(θ) = logp(x | θ) is differentiable.
Let S be the set of stationary points of `(θ). (i.e. ∇θ`(θ) = 0)

Theorem
Under mild regularity conditionsa, for any starting point θ0,

limn→∞θn = θ∗ for some stationary point θ∗ ∈ S and
θ∗ is a fixed point of the EM algorithm, i.e. M(θ∗) = θ∗. Moreover,
`(θn) strictly increases to `(θ∗) as n→∞, unless θn ≡ θ∗.

aFor details, see “Parameter Convergence for EM and MM Algorithms” by Florin Vaida in
Statistica Sinica (2005). http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 41 / 52

http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf


Variations on EM
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EM Gives Us Two New Problems

The “E” Step: Computing

J(θ) := L(q∗,θ) =
∑
z

q∗(z) log

(
p(x ,z | θ)

q∗(z)

)
The “M” Step: Computing

θnew = argmax
θ

J(θ).

Either of these can be too hard to do in practice.
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Generalized EM (GEM)

Addresses the problem of a difficult “M” step.
Rather than finding

θnew = argmax
θ

J(θ),

find any θnew for which
J(θnew)> J(θold).

Can use a standard nonlinear optimization strategy
e.g. take a gradient step on J.

We still get monotonically increasing likelihood.
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EM and More General Variational Methods

Suppose “E” step is difficult:
Hard to take expectation w.r.t. q∗(z) = p(z | x ,θold).

Solution: Restrict to distributions Q that are easy to work with.
Lower bound now looser:

q∗ = argmin
q∈Q

KL[q(z),p(z | x ,θold)]
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EM in Bayesian Setting

Suppose we have a prior p(θ).
Want to find MAP estimate: θ̂MAP = argmaxθ p(θ | x):

p(θ | x) = p(x | θ)p(θ)/p(x)

logp(θ | x) = logp(x | θ)+ logp(θ)− logp(x)

.
Still can use our lower bound on logp(x ,θ).

J(θ) := L(q∗,θ) =
∑
z

q∗(z) log

(
p(x ,z | θ)

q∗(z)

)
Maximization step becomes

θnew = argmax
θ

[J(θ)+ logp(θ)]

Homework: Convince yourself our lower bound is still tight at θ.
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Summer Homework: Gaussian Mixture Model (Hints)
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Homework: Derive EM for GMM from General EM Algorithm

Subsequent slides may help set things up.
Key skills:

MLE for multivariate Gaussian distributions.
Lagrange multipliers
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Gaussian Mixture Model (k Components)

GMM Parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

Let θ= (π,µ,Σ).

Marginal log-likelihood

logp(x | θ) = log

{
k∑

z=1

πzN (x | µz ,Σz)

}

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 49 / 52



q∗(z) are “Soft Assignments”

Suppose we observe n points: X = (x1, . . . ,xn) ∈ Rn×d .

Let z1, . . . ,zn ∈ {1, . . . ,k} be corresponding hidden variables.

Optimal distribution q∗ is:

q∗(z) = p(z | x ,θ).

Convenient to define the conditional distribution for zi given xi as

γ
j
i := p (z = j | xi )

=
πjN (xi | µj ,Σj)∑k

c=1πcN (xi | µc ,Σc)
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Expectation Step

The complete log-likelihood is

logp(x ,z | θ) =

n∑
i=1

log [πzN (xi | µz ,Σz)]

=

n∑
i=1

logπz + logN (xi | µz ,Σz)︸ ︷︷ ︸
simplifies nicely


Take the expected complete log-likelihood w.r.t. q∗:

J(θ) =
∑
z

q∗(z) logp(x ,z | θ)

=

n∑
i=1

k∑
j=1

γ
j
i [logπj + logN (xi | µj ,Σj)]
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Maximization Step

Find θ∗ maximizing J(θ):

µnewc =
1
nc

n∑
i=1

γci xi

Σnewc =
1
nc

n∑
i=1

γci (xi −µMLE)(xi −µMLE)
T

πnewc =
nc
n
,

for each c = 1, . . . ,k .
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