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Suppose we’re trying to predict a distribution of count from some input co-
variates. The simplest distribution in this situation is the Poisson distribution:

p(k;λ) =
e−λλk

k!

on k = 0, 1, 2, 3, . . . λ ∈ (0,∞).

1 Linear Conditional Probability Model

• Input: x ∈ Rd.

• Output: y ∈ {0, 1, 2, . . .}

• Data:

D = ((x1, y1), . . . , (xn, yn)) ∈
(
Rd × {0, 1, 2, . . .}

)n
assume is sampled i.i.d. from some distribution PX×Y .

• Action: λ ∈ (0,∞), where λ is the parameter of a Poisson distribution.

We’ve got to map input x to action λ in our action space, which is (0,∞).

x 7→ wTx︸︷︷︸
score s∈R

7→ λ︸︷︷︸
∈(0,∞)

To map the score s into our action space, we could use the transfer function ψ(s) =
exp(s). Then

λ = exp
(
wTx

)
.
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2 2 Nonlinear approach

So if we predict λ, what’s the probability of an observed count k for input vector
x?

p(y = k | x;w) =
e−λ(x)λ(x)k

k!

=
e− exp(wT x) [exp (wTx)]k

k!
.

The conditional likelihood for particular example (xi, yi), (where yi is a count)
is

p(y = yi | xi;w) =
e− exp(wT xi) [exp (wTxi)]yi

yi!
.

Easier to work with the log:

log p(y = yi | xi;w) = − exp
(
wTxi

)
+ yiw

Txi − log (yi!)

What do we need to find to fit this model? w. our strategy is to use maximum
log-likelihood:

logLD(w) = log p(D;w)

=
n∑
i=1

log p(y = yi | xi;w)

=
n∑
i=1

[
− exp

(
wTxi

)
+ yiw

Txi − log (yi!)
]

So find w maximizing this log-likelihood and we’re done. Can use standard gra-
dient based methods.

2 Nonlinear approach

In a nonlinear approach, we’ll replace the linear score function s = wTx with a
nonlinear function s = f(x):

x 7→ f(x)︸︷︷︸
score s∈R

7→ λ︸︷︷︸
∈(0,∞)

.
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Again, we can use the transfer function ψ(s) = exp(s). So

λ = exp (f(x)) .

For score function f , the probability of yi | xi is:

p(y = yi | xi; f) =
e− exp(f(xi)) [exp (f(xi))]

yi

yi!
.

Easier to work with the log:

log p(y = yi | xi; f) = − exp (f(xi)) + yif(xi)− log (yi!)

Somehow we want to find a function f that gives high log-likelihood to our ob-
served data:

logLD(w) =
n∑
i=1

[− exp (f(xi)) + yif(xi)− log (yi!)]

3 Gradient Boosting Approach

Let’s differentiate log p(y = yi | xi; f) w.r.t. f(xi):
∂

∂f(xi)
log p(y = yi | xi; f) = − exp (f(xi)) + yi

Now differentating the full log-likelihood is
∂

∂f(xi)
[logLD(f)] =

∂

∂f(xi)
[− exp (f(xi)) + yif(xi)− log (yi!)]

= − exp (f(xi)) + yi

So optimal unconstrained step direction for changing the vector of evaluations
f = (f(x1), . . . , f(xn)) is

−g = (−y1 + exp (f(x1)) , . . . ,−yn + exp (f(xn)))

Fix some base hypothesis space H of functions h : Rd → R. Then, our actual
step direction will be the h ∈ H that best fits −g in the least squares sense:

argmin
h∈H

n∑
i=1

(−gi − h(xi))2

= argmin
h∈H

n∑
i=1

([−yi + exp (f(xi))]− h(xi))2

So to recap:



4 3 Gradient Boosting Approach

1. Up to this point, our score function is f .

2. We want to improve f .

3. The optimal step direction for f(xi) is −yi + exp (f(xi)). We can evaluate
this. It’s a real number.

4. So we have a bunch of (xi,−gi) pairs that we will use regression overH to
fit.

Then we add something like 0.1h to f and repeat.


