Gradient Boosting Practice: Poisson
Response

David S. Rosenberg

Suppose we’re trying to predict a distribution of count from some input co-
variates. The simplest distribution in this situation is the Poisson distribution:

e ANk

p(kN) = o

onk=0,1,2,3,... A € (0,00).

1 Linear Conditional Probability Model

e Input: z € R4

e Output: y € {0,1,2,...}

e Data:

D= ((z1,%1),---, (@nyn)) € (RTx {0,1,2,...})"

assume 1s sampled 1.i.d. from some distribution Py y.

e Action: A € (0, 00), where \ is the parameter of a Poisson distribution.
We’ve got to map input x to action A in our action space, which is (0, co).
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score sER €(0,00)

To map the score s into our action space, we could use the transfer function ¢(s) =
exp(s). Then
A = exp (wa) .
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2 2 Nonlinear approach

So if we predict A\, what’s the probability of an observed count k for input vector
x?
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exp (wa)} k.
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The conditional likelihood for particular example (x;, y;), (Where y; is a count)
is
e exp(wha) [exp (’(UT-Ti)]yi

;!

ply = yi | wi;w) =
Easier to work with the log:

logp(y = y; | xi;w) = —exp (wai) + ywlz; — log (yi!)

What do we need to find to fit this model? w. our strategy is to use maximum
log-likelihood:

log Lp(w) = logp(D;w)

= ) logp(y = yi | wiyw)
i=1

n

— Z [— exp (wai) + yinsz‘ — log (yi!)]
i=1

So find w maximizing this log-likelihood and we’re done. Can use standard gra-
dient based methods.

2 Nonlinear approach

T

In a nonlinear approach, we’ll replace the linear score function s = w* x with a

nonlinear function s = f(x):

r— flx) —» A .
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Again, we can use the transfer function 1)(s) = exp(s). So
A=exp(f(z)).
For score function f, the probability of y; | x; is:
=D foxp (1))
yi! '

ply=yilzs f) =
Easier to work with the log:

logp(y =i |z f) = —exp(f(z:)) + yif(2:) — log (y:!)

Somehow we want to find a function f that gives high log-likelihood to our ob-
served data:

log Lp(w) = Z [—exp (f(x:)) + yif (z:) — log (y:!)]

3 Gradient Boosting Approach

Let’s differentiate log p(y = y; | a;; f) wrt. f(x;):

0
Fjay P = ui @i f) = —ep (/@) +u
Now differentating the full log-likelihood is
af?l’z) [log LD(f)] = % [— exp (f(xl)) + y%f(%) —log <yz|)]

= —exp (f(zi)) + s

So optimal unconstrained step direction for changing the vector of evaluations

f=(f(x1),..., f(zn)) s
—g=(—y+exp(f(z1)), ., —Yn +exp (f(zn)))

Fix some base hypothesis space H of functions 4 : R? — R. Then, our actual
step direction will be the h € H that best fits —g in the least squares sense:

So to recap:



4 3 Gradient Boosting Approach

1. Up to this point, our score function is f.
2. We want to improve f.

3. The optimal step direction for f(z;) is —y; + exp (f(z;)). We can evaluate
this. It’s a real number.

4. So we have a bunch of (x;, —g;) pairs that we will use regression over H to
fit.

Then we add something like 0.1h to f and repeat.



