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Abstract

Here we develop some basics of Bayesian linear regression. Most of the calculations
for this document come from the basic theory of gaussian random variables. To
keep the focus on the probabilistic and statistics concepts in this document, I’ve
outsourced the calculations to another document, on basical normal variable theory.

1 A Note on Notation

In many texts it’s common to denote a random variable with a captial letter,
while a particular instantiation of that variable would be denoted with the
corresponding lowercase letter. For example: p(Y = y | X = x). In our
development below, we would simply write p(y | x), since it should always
be clear in our context what is random and what is not.

We use capital letters to denote matrices (e.g. the design matrix X and
the covariance matrix Σ) and lower case letters to denote vectors and scalars.

1.1 Conditional distributions

throughout, everything we write below can be thought of as “conditional on
X”. if it’s a random variable, we can write it down on the right side of the
conditional.. but we can also just take it as convention that X is known at
every stage, and we can use it in any expression... Thus we mean the same
thing by each of the following three expressions:

p(D) = p(y | X) = p(y)
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2 Gaussian Linear Regression – Everything but Bayes

Given an input x ∈ Rd, we’d like to predict the corresponding output y ∈ R.
In Gaussian linear regression, we assume that y is generated by first taking a
linear function of x, namely f(x) = xTw, for some w ∈ Rd. Barber refers to
f(x) as the “clean” output. However, we don’t get to observe f(x) directly.
In Gaussian regression, we assume that we observe f(x) plus some random
Gaussian noise ε. This setting is described mathematically in the expressions
below:

f(x) = wTx

ε ∼ N (0, σ2) (2.1)
y = f(x) + ε.

We can think of these expressions as describing how “nature” or “the world”
generates a y value given an x:

1. We give Nature x. (Or some other process generates x.)

2. Nature computes1 f(x) = wTx.

3. Nature draws a random sample ε from N (0, σ2).

4. Nature tells us the value of y = f(x) + ε.

We can think of ε as the noise in our observation. The “learning” or
“estimation” problem is to figure out what w is, given a training set
D = {(x1, y1) , . . . , (xn, yn)} generated by this process.

Using basic properties of Gaussian distributions, we can write:

Y |x ∼ N (wTx, σ2). (2.2)

We read this as “the conditional distribution of [the random variable] Y given
input x is Gaussian with mean wTx and variance σ2. Although there is no
explicit reference to the “clean” output in 2.2, you can see it is just the mean
of the Gaussian distribution.

Note that the model we have described makes no mention of how x is
generated. Indeed, this is intentional. This kind of model is called a con-
ditional model. We only describe what Y is like, given x. The x may be

1 Nature knows w, though we (the data scientists) generally do not.
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the output of an unknown random process or it may be chosen by a person
designing an experiment. One can think about x simply as “input”.

[show distribution for a single x]
[show conditional distribution for several x’s (picture gaussian going ver-

tically?)
[show scatter plot of samples from several randomly chosen x’s , x’s chosen

uniformly at random]
So far, we have only specified the distribution for Y | x up to a particular

family of distributions. What does that mean? The distribution of Y | x
depends on the parameter w, which is unknown. We only know that

Distribution (Y | x) ∈
{
N
(
wTx, σ2

)
| w ∈ Rd

}
.

Our goal is to be able to predict the distribution of Y for a given x (or
perhaps some characteristic of this distribution, such as its expected value
or standard deviation). To end up with a single distribution for Y | x, we’ll
have to do more. One approach is to come up with a point estimate for w.
This means choosing a specific w ∈ Rd, typically based on our training data.
Coming up with a point estimate for w is the approach taken in classical
or “frequentist” statistics. In Section 3 we a classical frequentist approach
called maximum likelihood estimation.

By contrast to the frequentist approach, in the Bayesian approach, we
treat the unknown w as a random variable. In this approach, we never settle
on a single w, but rather we end up producing a distribution on w ∈ Rd,
called the posterior distribution. We then get the distribution for Y | x
by integrating out w.

What about σ2? Throughout this development, we assume that σ2 is a
known quantity. However, we can also treat it as another unknown parame-
ter, in both the frequentist approach and the Bayesian approach.

[REWRITE: ]We’ll first discuss what is arguably the most important
frequentist approach, namely maximum likelihood estimation. Then we will
introduce and develop the Bayesian approach in some detail.

For the rest of this document, we will assume that we have a training set
D = {(x1, y1) , . . . , (xn, yn)} of input/output pairs. Although we make no as-
sumptions about how the x1, . . . , xn were chosen, we assume that conditioned
on the inputs x = (x1, . . . , xn), the responses y1, . . . , yn are independent.
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3 Maximum Likelihood Estimation

Recall from (2.2) that our model has the form Y | x ∼ N (wTx, σ2). The
conditional density for a single observation Yi | xi is of course

pw(yi | xi) =
1

σ
√

2π
exp

(
−(yi − wTxi)2

2σ2

)
.

By our conditional independence assumption, we can write the joint density
for the dataset D = {(x1, y1), . . . , (xn, yn)}as

pw(D) =
n∏
i=1

pw(yi | xi). (3.1)

For a fixed dataset D, the function w 7→ pw(y | x) is called the likelihood
function. The likelihood function gives a measure of how “likely” each w is
to have given rise to the data D.

In maximum likelihood estimation, we choose w that has maximum like-
lihood for the data D. This estimator, know as the maximum likelihood
estimator, or MLE, is w∗ = arg maxw pw(D). It is often convenient to ex-
press the MLE in terms of the log-likelihood, since it changes the expression
in (3.1) from a product into a sum:

w∗ = arg max
w∈Rd

n∑
i=1

log pw(yi | xi).

Let us derive an expression for the MLE w∗. The log-likelihood is

log pw(D) =
n∑
i=1

log pw(yi | xi)

=
n∑
i=1

log

[
1

σ
√

2π
exp

(
−(yi − wTxi)2

2σ2

)]
=

n∑
i=1

log

[
1

σ
√

2π

]
︸ ︷︷ ︸
independent of w

+
n∑
i=1

(
−(yi − wTxi)2

2σ2

)
(3.2)



5

It is now straightforward2 to see that we can write

w∗ = arg min
w∈Rd

n∑
i=1

(yi − wTxi)2.

Hopefully, this is recognizable as the objective function for least squares
regression. The take-away message so far is that maximum likelihood es-
timation for gaussian linear regression is equivalent to least squares
linear regression.

For completeness, we’ll derive a closed form expression for w∗. First, let’s
rewrite this in matrix notation. Introduce the design matrix X ∈ Rn×d,
which has input vectors as rows:

X =

−x1−...
−xn−


and let y = (y1, . . . , yn)T be the corresponding column vector of responses.
Then

n∑
i=1

(yi − wTxi)2 = (y −Xw)T (y −Xw)

= yTy − 2wTXTy + wTXTXw.

Since we are minimizing this function over w ∈ Rd, and Rd is an open set,
the minimum must occur at a critical point. Differentiating with respect to
w and equating to 0, we get

2XTXw − 2XTy = 0

⇐⇒ XTXw = XTy (3.3)

This last expression represents what are often called the normal equations3.
If we assume XTX is invertible, then a bit of algebra gives the solution as

w∗ =
(
XTX

)−1
XTy.

2 First, note that the first term in the last expression (3.2) is independent of w, and
thus we can drop it without changing the maximizer w∗. Similarly, we can drop the factor
σ2 in the second term without affecting the maximizer. Finally, we can flip the sign of the
objective function and change the maximization to a minimization, again without affecting
w∗

3 They are called the normal equations because, after rewriting as XT (y −Xw) = 0,
we see they express that the residual vector y −Xw is normal to the column space of X.
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However, XTX may not be invertible. For example, if X short and
wide (n < d case), or more generally, if X does not have full column rank,
then XTX will not be invertible. This is the underdetermined case, in
which there are infinitely many equivalent solutions. One can show this with
some linear algebra, but this is not (or should not be) an important case
for machine learning practice. In the underdetermined case (and in general,
unless we have n� d), we should use regularized maximum likelihood, in
which case we don’t run into this problem.

EXERCISE?

4 Bayesian Method

In the Bayesian approach, we assign a probability distribution to all unknown
parameters. The distribution should represent our “prior belief ” about the
value of w. Let’s consider the case of a Gaussian prior distribution on w,
namely w ∼ N (0,Σp). The expressions below give a recipe for generating a
dataset of D = {(x1, y1) , . . . , (xn, yn)} under this model. Note that we as-
sume that x1, . . . , xn are given, and we are generating corresponding random
values for y1, . . . , yn:

w ∼ N (0,Σ)

f(xi) = wTxi for i = 1, . . . , n

εi ∼ N (0, σ2) i.i.d for i = 1, . . . , n

yi = f(xi) + εi.

We assume that both σ2 and Σ are known.
We have now written down a full Bayesisan model for our data generating

process. Note that we have a fully specified probability distribution for Yi | xi
– there are no “unknown parameters” in the way that w was unknown in the
maximum likelihood approach of Section (3). In this Bayesian model, w
is an unobserved random variable: mathematically, it has the same status
as the εi’s. In Equations (2.1) and (2.2), we had a collection of candidate
probability distributions for y|x, one for each value of w.

4.1 Matrix Form

It will be convenient to rewrite this model more compactly, using random
vectors. For the data D = {(x1, y1), . . . , (xn, yn)}, let y = (y1, . . . , yn) and
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denote the design matrix by X ∈ Rn×d, which has the input vectors as
rows:

X =

−x1−...
−xn−

 .

If we let f(X) = (f(x1), . . . , f(xn))T and ε = (ε1, . . . , εn), then we can write

w ∼ N (0,Σ)

f(X) = Xw

ε ∼ N (0, σ2I)

y = f(X) + ε,

where I denotes the n× n identity matrix4. We can write this in a compact
form as

w ∼ N (0,Σ)

y | X,w ∼ N (Xw, σ2I)

througho

4.2 Posterior

So far, we’ve defined our Bayesian model. As noted above, this amounts to
a specific conditional distribution for y | X.

p(w | D) =
p(D | w)p(w)

p(D)
.

Going to proportionality (important technique!)

We’re about to rewrite the expression above as

p(w | D) ∝ p(D | w)p(w).

The ∝ is read “is proportional to”. This is not a “hand-wavy” expression – it
has a precise mathematical meaning. It means that for every each dataset D,

4 In this form, it’s clear that we can generalize this model by replacing σ2I with a
general covariance matrix.
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we have a proportionality constant k such that p(w | D) = kp(D | w)p(w).
Put another way, there is a function k(D) such that

p(w | D) = k(D)p(D | w)p(w) ∀w,D.

So

p(w | D) ∝ p(D | w)p(w)

= p(y | X,w)p(w)

= N
(
y ; Xw, σ2I

)
N (w ; 0,Σ)

∝ exp

(
− 1

2σ2
(y −Xw)T (y −Xw)

)
exp

(
−1

2
wTΣ−1w

)
= exp

(
−1

2

[
1

σ2
(y −Xw)T (y −Xw) + wTΣ−1w

])
.

Extracting out the piece in the exponent,

1

σ2
(y −Xw)T (y −Xw) + wTΣ−1w

=
1

σ2

(
wTXTXw − 2wTXTy + yTy

)
+ wTΣ−1w

= wT
(

1

σ2
XTX + Σ−1

)
w − 2

(
1

σ2

)
yTXw.

To simplify our expressions, let’s takeM = 1
σ2X

TX+Σ−1 and b =
(

1
σ2

)
XTy.

The expression them becomes wTMw − 2bTw. We can now “complete the
quadratic form” by applying following identity

wTMw − 2bTw =
(
w −M−1b

)T
M(w −M−1b)− bTM−1b,

which is easily verified by expanding the quadratic form on the RHS. We call
it “completing the quadratic form” because while the LHS has both quadratic
and linear terms involving w, while on the RHS w only appears in a quadratic
term. (For a slower introduction to this technique, see the notes on Com-
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pleting the Quadratic Form.) Putting it together, we get

p(w | D) ∝ exp

(
−1

2

[(
w −M−1b

)T
M(w −M−1b)− bTM−1b

])
= exp

(
−1

2

[(
w −M−1b

)T
M(w −M−1b)

])
exp

(
−1

2

[
−bTM−1b

])
∝ exp

(
−1

2

[(
w −M−1b

)T
M(w −M−1b)

])
.

Now recall that a Gaussian density in w is given by

N (w;µ,Σ) = |2πΣ|−1/2 exp

(
−1

2
(w − µ)TΣ−1(w − µ)

)
.

So
p(w | D) ∝ N

(
w;M−1b,M−1) (4.1)

Since the LHS and RHS of (4.1) are both densities in w and are proportional,
they must actually be equal5:

p(w | D) = N
(
w;M−1b,M−1) ,

where M = 1
σ2X

TX + Σ−1 and b =
(

1
σ2

)
XTy.

Note that the posterior mean is

M−1b =

(
1

σ2
XTX + Σ−1

)−1
1

σ2
XTy

=
(
XTX + σ2Σ−1

)−1
XTy,

which should look familiar from our study of ridge regression. Indeed, if the
prior covariance matrix is taken to be Σ = σ2

λ
I, then the posterior mean is(

XTX + λI
)−1

XTy,

which is exactly the ridge regression estimate for w.
To make things look prettier, people often specify the gaussian prior in

terms of the precision matrix, which is the inverse of the covariance matrix.
That is Λ = Σ−1. Then the posterior mean looks like(

XTX + σ2Λ
)−1

XTy.

5 See notes on proportionality for a bit more discussion of this idea.
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The precision matrix of a Gaussian distribution has some other interesting
properties as well (see ...).

which is of course the ridge regression solution. S
Thus we have derived the posterior distribution for the unknown param-

eter w conditioned on the data D. We write this result in the theorem below,
purely in terms of probability distributions, without mentioning “priors” or
“posteriors”.

Theorem 1. Given a fixed design matrix X ∈ Rm×n, and a random vec-
tor y = Xw + ε, where ε ∼ N (0, σ2I) and w ∼ N (0,Σ), the conditional
distribution of w | y is N (m,V ), where

m =
(
XTX + σ2Σ−1

)−1
XTy

V = σ2
(
XTX + σ2Σ−1

)−1
.

4.2.1 Predictive Distributions

In machine learning contexts, our ultimate goal is typically prediction, rather
than parameter estimation. That is, our primary objective is typically to
predict the y corresponding to a new x, rather than to estimate w. Predictive
distributions are straightforward to calculate. Before seeing any data, the
predictive distribution for y given x is simply

p(y | x) =

∫
w

p(y | w)p(w) dw

TO DO

1. Finish section on predictive distributions

Both David Barber and Bishop’s books are good resources for this topic.


