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Abstract

This is a collection of a few key (and standard) results about multivariate Gaussian
distributions. I have not included many proofs, because I don’t know how to do it
without either being very tedious and technical, or using some mathematics that
are beyond the prerequisites. To my knowledge, there are two primary approaches
to developing the theory of multivariate Gaussian distributions. The first, and by
far the most common approach in machine learning textbooks, is to define the
multivariate gaussian distribution in terms of its density function, and to derive
results by manipulating these density functions. With this approach, a lot of the
work turns out to be elaborate matrix algebra calculations happening inside the
exponent of the Gaussian density. One issue with this approach is that the multi-
variate Gaussian density is only defined when the covariance matrix is invertible.
To keep the derivations rigorous, some care must be taken to justify that the new
covariance matrices we come up with are invertible. For my taste, I find the rigor in
our textbooks to be a bit light on these points. We’ve included the proof to Theo-
rem 4 to give a flavor of the details one should add. The second major approach to
multivariate Gaussian distributions does not use density functions at all and does
not require invertible covariance matrices. This approach is much cleaner and more
elegant, but it relies on the theory of characteristic functions and the Cramer-Wold
device to get started, and these are beyond the prerequisites for this course. You
can often find this development in more advanced probability and statistics books,
such as Rao’s excellent Linear Statistical Inference and Its Applications (Chapter
8).
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2 2 Recognizing a Gaussian Density

1 Multivariate Gaussian Density

A random vector x ∈ Rd has a d-dimensional multivariate Gaussian
distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d if its
density is given by

N (x | µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where |Σ| denotes the determinant of Σ. Note that this expression requires
that the covariance matrix Σ be invertible1. Sometimes we will rewrite the
factor in front of the exp(·) as |2πΣ|−1/2, which follows from basic facts about
determinants.

Exercise 1. There are at least 2 claims implicit in this definition. First, that
the expression given is, in fact, a density (i.e. it’s non-negative and integrates
to 1). Second, the density corresponds to a distribution with mean µ and
covariance Σ, as claimed.

2 Recognizing a Gaussian Density

If we come across a density function of the form p(x) ∝ e−q(x)/2, where q(x) is
a positive definite quadratic function, then p(x) is the density for a Gaussian
distribution. More precisely, we have the following theorem:

Theorem 2. Consider the quadratic function q(x) = xTΛx − 2bTx + c, for
any symmetric positive definite Λ ∈ Rd×d, any b ∈ Rd, and c ∈ R. If
p(x) is a density function with

p(x) ∝ e−q(x)/2,

then p(x) is a multivariate Gaussian density with mean Λ−1b and covariance
Λ−1. That is,

p(x) =
|Λ|1/2

(2π)d/2
exp

(
−1

2
(x− Λ−1b)TΛ(x− Λ−1b)

)
.

1 We can have a d-dimensional Gaussian distribution with a non-invertible Σ, but such
a distribution will not have a density on Rd, and we will not address that case here.
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Note: The inverse of the covariance matrix is called the precision ma-
trix. Precision matrices of multivariate Gaussians have some interesting
properties. [explain that this is the Gaussian density in “information form”
or “canonical form” c.f. Murphy p. 117).]

Proof. Completing the square, we have

q(x) = xTΛx− 2bTx+ c

=
(
x− Λ−1b

)T
Λ(x− Λ−1b)− bTΛ−1b+ c.

Since the last two terms are independent of x, when we exponentiate q(x),
they can be absorbed into the constant of proportionality. That is,

e−q(x)/2 = exp

[
−1

2

(
x− Λ−1b

)T
Λ(x− Λ−1b)

]
exp

(
−1

2

[
−bTΛ−1b+ c

])
∝ exp

[
−1

2

(
x− Λ−1b

)T
Λ(x− Λ−1b)

]
Now recall that the density function for the multivariate Gaussian density
N (µ,Σ) is

φ(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Thus we see that p(x) must also be a Gaussian density with covariance Σ =
Λ−1 and mean Λ−1b.

3 Conditional Distributions (Bishop Section 2.3.1)

Let x ∈ Rd have a Gaussian distribution: x ∼ N (µ,Σ). Let’s partition the
random variables in x into two pieces:

x =

(
x1
x2

)
,

where x1 ∈ Rd1 , x2 ∈ Rd2 and d = d1 + d2. Similarly, we’ll partition the
mean vector, the covariance matrix, and the precision matrix as

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
,
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where µ1 ∈ Rd1 , Σ12 ∈ Rd1×d2 , Λ12 ∈ Rd1×d2 , etc. Note that by the symmetry
of the covariance matrix Σ, we have Σ12 = ΣT

21. Note also that Σ11 and Σ22

are spd since Σ is (trivial from definition of spd).

When x =

(
x1
x2

)
has a Gaussian distribution, we say that x1 and x2 are

jointly Gaussian. Can we conclude anything about the marginal distri-
butions of x1 and x2? Indeed, the following theorem states that they are
individually Gaussian:

Theorem 3. . Let x, µ, and Σ be as defined above. Then the marginal
distributions of x1 and x2 are each Gaussian, with

x1 ∼ N (µ1,Σ1)

x2 ∼ N (µ2,Σ2) .

Proof. (See Bishop Section 2.3.2, p. 88) This can be done by showing that the
marginal density p(x1) =

∫
p(x1, x2) dx2 has the form claimed, and similarly

for x2.

So when x1 and x2 are jointly Gaussian, we know that x1 and x2 are also
marginally Gaussian. It turns out that the conditional distributions x1 | x2
and x2 | x1 are also Gaussian:

Theorem 4. Let x, µ, and Σ be as defined above. Assume that Σ22 is positive
definite2. Then the distribution of x1 given x2 is multivariate normal. More
specifically,

x1 | x2 ∼ N
(
µ1|2,Σ1|2

)
,

where

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

(Note that Σ22 is positive definite, and thus invertible, since Σ is positive
definite.)

Proof. (See Bishop Section 2.3.1, p. 85)
2 In fact, this is implied by our assumption that Σ is positive definite.
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Example. Consider a standard regression framework in which we are build-
ing a predictive model for x1 ∈ R given x2 ∈ Rd. Recall that if we are using a
square loss, then the Bayes optimal prediction function is f ∗(x2) = E [x1 | x2].
If we assume that x1 and x2 are jointly Gaussian with a positive definite co-
variance matrix, then Theorem 4 tells us that

E [x1 | x2] = µ1 + Σ12Σ
−1
22 (x2 − µ2).

Of course, in practice we don’t know µ and Σ. Nevertheless, what’s inter-
esting is that the Bayes optimal prediction function is an affine function of
x2 (i.e. a linear function plus a constant). Thus if we think that our input
vector x2 and our response variable x1 are jointly Gaussian, there’s no reason
to go beyond a hypothesis space of affine functions of x2. In other words,
linear regression is all we need.

4 Joint Distribution from Marginal + Conditional

In Section 3, we found that if x1 and x2 are jointly Gaussian, then x2 is
marginally Gaussian and the conditional distribution x1 | x2 was also Gaus-
sian, where the mean is a linear function of x2. The following theorem shows
that we can we can go in the reverse direction as well.

Theorem. Suppose x1 ∼ N (µ1,Σ1) and x2 | x1 ∼ N
(
Ax1 + b,Σ2|1

)
, for

some µ1 ∈ Rd1, Σ1 ∈ Rd1×d1, A ∈ Rd2×d1, and Σ2|1 ∈ Rd2×d2. Then x1 and
x2 are jointly Gaussian with

x =

(
x1
x2

)
∼ N

((
µ1

Aµ1 + b

)
,

(
Σ1 Σ1A

T

AΣ1 Σ2|1 + AΣ1A
T

))
.

We’ll prove this with two steps. First, we’ll show that the mean and
variance of x take the form claimed above. Then, we’ll write down the joint
density p(x1, x2) = p(x1)p(x2 | x1) and show that it’s proportional to e−q(x)/2
for an appropriate quadratic q(x). The result then follows from 2.

Proof. We’re given that Ex1 = µ1. For the other part of the mean vector,
note that

Ex2 = EE [x2 | x1]
= E (Ax1 + b) = Aµ1 + b,
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which explains the lower entry in the mean.
We are given that the marginal covariance of x1 is Σ1. That is,

E (x1 − µ1) (x1 − µ1)
T = Σ1.

We’re also given the conditional covariance of x2:

E
[
(x2 − Ax1 − b) (x2 − Ax1 − b)T | x1

]
= Σ2|1.

We’ll now try to express Cov(x2) in terms of these expressions above. For
convenience, we’ll introduce the random variablem2|1 = Ax1+b. (It’s random
because it depends on x1.) Note that Em2|1 = Ex2 = Aµ1 + b. So

Cov(x2) = E (x2 − Ex2) (x2 − Ex2)T (by definition)

= EE
[
(x2 − Ex2) (x2 − Ex2)T | x1

]
(law of iterated expectations)

= EE

x2−m2|1 +m2|1︸ ︷︷ ︸
=0

−Ex2

x2−m2|1 +m2|1︸ ︷︷ ︸
=0

−Ex2

T

| x1


= EE

[((
x2 −m2|1

)
+
(
m2|1 − Ex2

)) ((
x2 −m2|1

)
+
(
m2|1 − Ex2

))T | x1]
= U + 2V +W,

where we’ve multiplied out the parenthesized terms. The terms are as follows:

U = EE
[(
x2 −m2|1

) (
x2 −m2|1

)T | x1]
= Σ2|1

The cross-term turns out to be zero:

V = EE
[(
x2 −m2|1

) (
m2|1 − Ex2

)T | x1]
EE
[
(x2 − Ax1 − b) (Ax1 + b− Aµ1 − b)T | x1

]
= E

E [(x2 − Ax1 + b) | x1]︸ ︷︷ ︸
=0

(Ax1 + b− Aµ1 − b)T


= 0,
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where in the second to last step we used the fact that E [f(x)g(x, y) | x] =
f(x)E [g(x, y) | x] . This same identity is used a couple more times below.
Finally the last term is

W = EE
[(
m2|1 − Em2|1

) (
m2|1 − Em2|1

)T | x1]
= EE

[
(Ax1 − Aµ1) (Ax1 − Aµ1)

T | x1
]

= E
[
(Ax1 − Aµ1) (Ax1 − Aµ1)

T
]

= A
[
E (x1 − µ1) (x1 − µ1)

T
]
AT

= AΣ1A
T

So

Cov(x2) = Σ2|1 + AΣ1A
T ,

The top-right cross-covariance submatrix can be computed as follows:

E (x1 − µ1) (x2 − Aµ1 − b)T = EE
[
(x1 − µ1) (x2 − Aµ1 − b)T | x1

]
= E

[
(x1 − µ1)E

[
(x2 − Aµ1 − b)T | x1

]]
= E

[
(x1 − µ1) (Ax1 + b− Aµ1 − b)T

]
= E

[
(x1 − µ1) (x1 − µ1)

T
]
AT

= Σ1A
T .

Finally, the bottom left cross-covariance matrix is just the transpose of the
top right.

So far we have shown that the x =

(
x1
x2

)
has the mean and covariance

specified in the theorem statement. We now show that the joint density is
indeed Gaussian:
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p(x1, x2) = p(x1)p(x2 | x1)
= N (x1 | µ1,Σ1)N

(
x2 | Ax1 + b,Σ2|1

)
∝ exp

(
−1

2
(x1 − µ1)

TΣ−11 (x1 − µ1)

)
× exp

(
−1

2
(x2 − Ax1 − b)TΣ−12|1(x2 − Ax1 − b)

)
= e−q(x)/2,

where

q(x) = (x1 − µ1)
TΣ−11 (x1 − µ1) + (x2 − Ax1 − b)TΣ−12|1(x2 − Ax1 − b).

To apply Theorem 2, we need to make sure we can write the quadratic
terms of q(x) as xTMx, where M is symmetric positive definite. We’ll sepa-
rate the quadratic terms in q(x) and write l.o.t. for “lower order terms” ,
which includes linear terms of the form bTx and constants:

q(x) = x1Σ
−1
1 x1 + (x2 − Ax1)TΣ−12|1(x2 − Ax1) + l.o.t.

= xT1

(
Σ−11 + ATΣ−12|1A

)
x1 − 2xT1A

TΣ−12|1x2 + xT2 Σ−12|1x2 + l.o.t.

=

(
x1
x2

)T ((
Σ−11 + ATΣ−12|1A

)
−ATΣ−12|1

−Σ−12|1A Σ−12|1

)(
x1
x2

)
+ l.o.t.

LetM be that matrix in the middle. We only need to show thatM is positive
definite. By definition, the symmetric matrix M is positive definite, iff for

all x =

(
x1
x2

)
6= 0, we have xTMx > 0. Referring back to our first expression

for q(x) in the equation block above, note that

xTMx = x1Σ
−1
1 x1︸ ︷︷ ︸
α1

+ (x2 − Ax1)TΣ−12|1(x2 − Ax1)︸ ︷︷ ︸
α2

,

where we’ll refer to the first term on the RHS as α1 and the second term as
α2. Suppose x1 6= 0. Then since Σ−11 is positive definite, α1 > 0 and since Σ−12|1
is positive definite, α2 ≥ 0 (it could still be 0 if x2 = Ax1). Thus xTMx > 0.
Suppose x1 = 0 and x2 6= 0. Then α1 = 0 and α2 = xT2 Σ−12|1x2 > 0, by
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positive definiteness. So again xTMx > 0. This demonstrates that M is
positive definite.

Thus p(x) ∝ e−q(x)/2, where q(x) has the form required by Theorem 2.

We conclude that x =

(
x1
x2

)
is jointly Gaussian. We have also shown that

the marginal means and covariances, as well as the cross-covariances all have
the forms claimed.


