default search action
Massimiliano Pontil
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j45]Ruohan Wang, John Isak Texas Falk, Massimiliano Pontil, Carlo Ciliberto:
Robust Meta-Representation Learning via Global Label Inference and Classification. IEEE Trans. Pattern Anal. Mach. Intell. 46(4): 1996-2010 (2024) - [j44]Daniela Angela Parletta, Andrea Paudice, Massimiliano Pontil, Saverio Salzo:
High Probability Bounds for Stochastic Subgradient Schemes with Heavy Tailed Noise]. SIAM J. Math. Data Sci. 6(4): 953-977 (2024) - [j43]Luca Romeo, Temitayo A. Olugbade, Massimiliano Pontil, Nadia Bianchi-Berthouze:
Multi-Rater Consensus Learning for Modeling Multiple Sparse Ratings of Affective Behaviour. IEEE Trans. Affect. Comput. 15(3): 859-871 (2024) - [c131]Vladimir R. Kostic, Pietro Novelli, Riccardo Grazzi, Karim Lounici, Massimiliano Pontil:
Learning invariant representations of time-homogeneous stochastic dynamical systems. ICLR 2024 - [c130]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates. ICML 2024 - [c129]Vladimir R. Kostic, Karim Lounici, Prune Inzerilli, Pietro Novelli, Massimiliano Pontil:
Consistent Long-Term Forecasting of Ergodic Dynamical Systems. ICML 2024 - [c128]Daniel Felipe Ordoñez Apraez, Vladimir Kostic, Giulio Turrisi, Pietro Novelli, Carlos Mastalli, Claudio Semini, Massimiliano Pontil:
Dynamics harmonic analysis of robotic systems: Application in data-driven Koopman modelling. L4DC 2024: 1318-1329 - [i80]Daniel Felipe Ordoñez Apraez, Giulio Turrisi, Vladimir Kostic, Mario Martín, Antonio Agudo, Francesc Moreno-Noguer, Massimiliano Pontil, Claudio Semini, Carlos Mastalli:
Morphological Symmetries in Robotics. CoRR abs/2402.15552 (2024) - [i79]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates. CoRR abs/2403.11687 (2024) - [i78]Zhi Su, Xiaoyu Huang, Daniel Felipe Ordoñez Apraez, Yunfei Li, Zhongyu Li, Qiayuan Liao, Giulio Turrisi, Massimiliano Pontil, Claudio Semini, Yi Wu, Koushil Sreenath:
Leveraging Symmetry in RL-based Legged Locomotion Control. CoRR abs/2403.17320 (2024) - [i77]Vladimir R. Kostic, Karim Lounici, Hélène Halconruy, Timothee Devergne, Massimiliano Pontil:
Learning the Infinitesimal Generator of Stochastic Diffusion Processes. CoRR abs/2405.12940 (2024) - [i76]Arya Akhavan, Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov:
Contextual Continuum Bandits: Static Versus Dynamic Regret. CoRR abs/2406.05714 (2024) - [i75]Timothee Devergne, Vladimir Kostic, Michele Parrinello, Massimiliano Pontil:
From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach. CoRR abs/2406.09028 (2024) - [i74]Pietro Novelli, Marco Pratticò, Massimiliano Pontil, Carlo Ciliberto:
Operator World Models for Reinforcement Learning. CoRR abs/2406.19861 (2024) - [i73]Vladimir R. Kostic, Karim Lounici, Grégoire Pacreau, Pietro Novelli, Giacomo Turri, Massimiliano Pontil:
Neural Conditional Probability for Inference. CoRR abs/2407.01171 (2024) - 2023
- [j42]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-Start. J. Mach. Learn. Res. 24: 167:1-167:37 (2023) - [c127]Leonardo Cella, Karim Lounici, Grégoire Pacreau, Massimiliano Pontil:
Multi-task Representation Learning with Stochastic Linear Bandits. AISTATS 2023: 4822-4847 - [c126]John Isak Texas Falk, Luigi Bonati, Pietro Novelli, Michele Parrinello, Massimiliano Pontil:
Transfer learning for atomistic simulations using GNNs and kernel mean embeddings. NeurIPS 2023 - [c125]Vladimir Kostic, Karim Lounici, Pietro Novelli, Massimiliano Pontil:
Sharp Spectral Rates for Koopman Operator Learning. NeurIPS 2023 - [c124]Giacomo Meanti, Antoine Chatalic, Vladimir Kostic, Pietro Novelli, Massimiliano Pontil, Lorenzo Rosasco:
Estimating Koopman operators with sketching to provably learn large scale dynamical systems. NeurIPS 2023 - [i72]Vladimir Kostic, Karim Lounici, Pietro Novelli, Massimiliano Pontil:
Koopman Operator Learning: Sharp Spectral Rates and Spurious Eigenvalues. CoRR abs/2302.02004 (2023) - [i71]John Isak Texas Falk, Luigi Bonati, Pietro Novelli, Michele Parrinello, Massimiliano Pontil:
Transfer learning for atomistic simulations using GNNs and kernel mean embeddings. CoRR abs/2306.01589 (2023) - [i70]Giacomo Meanti, Antoine Chatalic, Vladimir R. Kostic, Pietro Novelli, Massimiliano Pontil, Lorenzo Rosasco:
Estimating Koopman operators with sketching to provably learn large scale dynamical systems. CoRR abs/2306.04520 (2023) - [i69]Vladimir R. Kostic, Pietro Novelli, Riccardo Grazzi, Karim Lounici, Massimiliano Pontil:
Deep projection networks for learning time-homogeneous dynamical systems. CoRR abs/2307.09912 (2023) - [i68]Daniel Felipe Ordoñez Apraez, Vladimir Kostic, Giulio Turrisi, Pietro Novelli, Carlos Mastalli, Claudio Semini, Massimiliano Pontil:
Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman Modelling. CoRR abs/2312.07457 (2023) - [i67]Prune Inzerilli, Vladimir Kostic, Karim Lounici, Pietro Novelli, Massimiliano Pontil:
Consistent Long-Term Forecasting of Ergodic Dynamical Systems. CoRR abs/2312.13426 (2023) - [i66]Giacomo Turri, Vladimir Kostic, Pietro Novelli, Massimiliano Pontil:
A randomized algorithm to solve reduced rank operator regression. CoRR abs/2312.17348 (2023) - 2022
- [j41]Luca Romeo, Andrea Cavallo, Lucia Pepa, Nadia Bianchi-Berthouze, Massimiliano Pontil:
Multiple Instance Learning for Emotion Recognition Using Physiological Signals. IEEE Trans. Affect. Comput. 13(1): 389-407 (2022) - [j40]Nicolò Cesa-Bianchi, Pierre Laforgue, Andrea Paudice, Massimiliano Pontil:
Multitask Online Mirror Descent. Trans. Mach. Learn. Res. 2022 (2022) - [c123]Jordan Frécon, Gilles Gasso, Massimiliano Pontil, Saverio Salzo:
Bregman Neural Networks. ICML 2022: 6779-6792 - [c122]Vladimir R. Kostic, Saverio Salzo, Massimiliano Pontil:
Batch Greenkhorn Algorithm for Entropic-Regularized Multimarginal Optimal Transport: Linear Rate of Convergence and Iteration Complexity. ICML 2022: 11529-11558 - [c121]Dimitri Meunier, Massimiliano Pontil, Carlo Ciliberto:
Distribution Regression with Sliced Wasserstein Kernels. ICML 2022: 15501-15523 - [c120]Arya Akhavan, Evgenii Chzhen, Massimiliano Pontil, Alexandre B. Tsybakov:
A gradient estimator via L1-randomization for online zero-order optimization with two point feedback. NeurIPS 2022 - [c119]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
Conditional Meta-Learning of Linear Representations. NeurIPS 2022 - [c118]Riccardo Grazzi, Arya Akhavan, John Isak Texas Falk, Leonardo Cella, Massimiliano Pontil:
Group Meritocratic Fairness in Linear Contextual Bandits. NeurIPS 2022 - [c117]Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, Massimiliano Pontil:
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces. NeurIPS 2022 - [c116]John Isak Texas Falk, Carlo Ciliberto, Massimiliano Pontil:
Implicit kernel meta-learning using kernel integral forms. UAI 2022: 652-662 - [c115]Rosanna Turrisi, Rémi Flamary, Alain Rakotomamonjy, Massimiliano Pontil:
Multi-source domain adaptation via weighted joint distributions optimal transport. UAI 2022: 1970-1980 - [i65]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-Start. CoRR abs/2202.03397 (2022) - [i64]Dimitri Meunier, Massimiliano Pontil, Carlo Ciliberto:
Distribution Regression with Sliced Wasserstein Kernels. CoRR abs/2202.03926 (2022) - [i63]Leonardo Cella, Karim Lounici, Massimiliano Pontil:
Multi-task Representation Learning with Stochastic Linear Bandits. CoRR abs/2202.10066 (2022) - [i62]Pietro Novelli, Luigi Bonati, Massimiliano Pontil, Michele Parrinello:
Characterizing metastable states with the help of machine learning. CoRR abs/2204.07391 (2022) - [i61]Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, Massimiliano Pontil:
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces. CoRR abs/2205.14027 (2022) - [i60]Leonardo Cella, Karim Lounici, Massimiliano Pontil:
Meta Representation Learning with Contextual Linear Bandits. CoRR abs/2205.15100 (2022) - [i59]Riccardo Grazzi, Arya Akhavan, John Isak Texas Falk, Leonardo Cella, Massimiliano Pontil:
Group Meritocratic Fairness in Linear Contextual Bandits. CoRR abs/2206.03150 (2022) - [i58]Ruohan Wang, Marco Ciccone, Giulia Luise, Andrew Yapp, Massimiliano Pontil, Carlo Ciliberto:
Schedule-Robust Online Continual Learning. CoRR abs/2210.05561 (2022) - [i57]Ruohan Wang, John Isak Texas Falk, Massimiliano Pontil, Carlo Ciliberto:
Robust Meta-Representation Learning via Global Label Inference and Classification. CoRR abs/2212.11702 (2022) - 2021
- [c114]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Convergence Properties of Stochastic Hypergradients. AISTATS 2021: 3826-3834 - [c113]Henry Gouk, Timothy M. Hospedales, Massimiliano Pontil:
Distance-Based Regularisation of Deep Networks for Fine-Tuning. ICLR 2021 - [c112]Leonardo Cella, Massimiliano Pontil, Claudio Gentile:
Best Model Identification: A Rested Bandit Formulation. ICML 2021: 1362-1372 - [c111]Andreas Maurer, Daniela Angela Parletta, Andrea Paudice, Massimiliano Pontil:
Robust Unsupervised Learning via L-statistic Minimization. ICML 2021: 7524-7533 - [c110]Mark Herbster, Stephen Pasteris, Fabio Vitale, Massimiliano Pontil:
A Gang of Adversarial Bandits. NeurIPS 2021: 2265-2279 - [c109]Andreas Maurer, Massimiliano Pontil:
Concentration inequalities under sub-Gaussian and sub-exponential conditions. NeurIPS 2021: 7588-7597 - [c108]Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov:
Distributed Zero-Order Optimization under Adversarial Noise. NeurIPS 2021: 10209-10220 - [c107]Ruohan Wang, Massimiliano Pontil, Carlo Ciliberto:
The Role of Global Labels in Few-Shot Classification and How to Infer Them. NeurIPS 2021: 27160-27170 - [c106]Leonardo Cella, Massimiliano Pontil:
Multi-task and meta-learning with sparse linear bandits. UAI 2021: 1692-1702 - [i56]Andreas Maurer, Massimiliano Pontil:
Some Hoeffding- and Bernstein-type Concentration Inequalities. CoRR abs/2102.06304 (2021) - [i55]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
Conditional Meta-Learning of Linear Representations. CoRR abs/2103.16277 (2021) - [i54]Nicolò Cesa-Bianchi, Pierre Laforgue, Andrea Paudice, Massimiliano Pontil:
Multitask Online Mirror Descent. CoRR abs/2106.02393 (2021) - [i53]Ruohan Wang, Massimiliano Pontil, Carlo Ciliberto:
The Role of Global Labels in Few-Shot Classification and How to Infer Them. CoRR abs/2108.04055 (2021) - [i52]Vladimir Kostic, Saverio Salzo, Massimiliano Pontil:
Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport. CoRR abs/2112.00838 (2021) - 2020
- [j39]Luca Oneto, Michele Donini, Massimiliano Pontil, John Shawe-Taylor:
Randomized learning and generalization of fair and private classifiers: From PAC-Bayes to stability and differential privacy. Neurocomputing 416: 231-243 (2020) - [j38]Marco Fiorucci, Marina Khoroshiltseva, Massimiliano Pontil, Arianna Traviglia, Alessio Del Bue, Stuart James:
Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 133: 102-108 (2020) - [j37]Alessandro Rudi, Leonard Wossnig, Carlo Ciliberto, Andrea Rocchetto, Massimiliano Pontil, Simone Severini:
Approximating Hamiltonian dynamics with the Nyström method. Quantum 4: 234 (2020) - [c105]Luca Oneto, Michele Donini, Massimiliano Pontil, Andreas Maurer:
Learning Fair and Transferable Representations with Theoretical Guarantees. DSAA 2020: 30-39 - [c104]Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil:
Meta-learning with Stochastic Linear Bandits. ICML 2020: 1360-1370 - [c103]Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, Saverio Salzo:
On the Iteration Complexity of Hypergradient Computation. ICML 2020: 3748-3758 - [c102]Jordan Frécon, Saverio Salzo, Massimiliano Pontil:
Unveiling Groups of Related Tasks in Multi - Task Learning. ICPR 2020: 7134-7141 - [c101]Michele Donini, Luca Franceschi, Orchid Majumder, Massimiliano Pontil, Paolo Frasconi:
Marthe: Scheduling the Learning Rate Via Online Hypergradients. IJCAI 2020: 2119-2125 - [c100]Luca Oneto, Michele Donini, Massimiliano Pontil:
General Fair Empirical Risk Minimization. IJCNN 2020: 1-8 - [c99]Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov:
Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits. NeurIPS 2020 - [c98]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Fair regression with Wasserstein barycenters. NeurIPS 2020 - [c97]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Fair regression via plug-in estimator and recalibration with statistical guarantees. NeurIPS 2020 - [c96]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine Tuning. NeurIPS 2020 - [c95]Andreas Maurer, Massimiliano Pontil:
Estimating weighted areas under the ROC curve. NeurIPS 2020 - [c94]Luca Oneto, Michele Donini, Giulia Luise, Carlo Ciliberto, Andreas Maurer, Massimiliano Pontil:
Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning. NeurIPS 2020 - [c93]Giulia Denevi, Massimiliano Pontil, Dimitrios Stamos:
Online Parameter-Free Learning of Multiple Low Variance Tasks. UAI 2020: 889-898 - [i51]Henry Gouk, Timothy M. Hospedales, Massimiliano Pontil:
Distance-Based Regularisation of Deep Networks for Fine-Tuning. CoRR abs/2002.08253 (2020) - [i50]Feliks Hibraj, Marcello Pelillo, Saverio Salzo, Massimiliano Pontil:
Efficient Tensor Kernel methods for sparse regression. CoRR abs/2003.10482 (2020) - [i49]Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil:
Meta-learning with Stochastic Linear Bandits. CoRR abs/2005.08531 (2020) - [i48]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Fair Regression with Wasserstein Barycenters. CoRR abs/2006.07286 (2020) - [i47]Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov:
Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits. CoRR abs/2006.07862 (2020) - [i46]Rosanna Turrisi, Rémi Flamary, Alain Rakotomamonjy, Massimiliano Pontil:
Multi-source Domain Adaptation via Weighted Joint Distributions Optimal Transport. CoRR abs/2006.12938 (2020) - [i45]Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, Saverio Salzo:
On the Iteration Complexity of Hypergradient Computation. CoRR abs/2006.16218 (2020) - [i44]Giulia Denevi, Dimitris Stamos, Massimiliano Pontil:
Online Parameter-Free Learning of Multiple Low Variance Tasks. CoRR abs/2007.05732 (2020) - [i43]Giulia Luise, Massimiliano Pontil, Carlo Ciliberto:
Generalization Properties of Optimal Transport GANs with Latent Distribution Learning. CoRR abs/2007.14641 (2020) - [i42]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning. CoRR abs/2008.10857 (2020) - [i41]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Convergence Properties of Stochastic Hypergradients. CoRR abs/2011.07122 (2020) - [i40]Leonardo Cella, Claudio Gentile, Massimiliano Pontil:
Online Model Selection: a Rested Bandit Formulation. CoRR abs/2012.03522 (2020) - [i39]Andreas Maurer, Daniela A. Parletta, Andrea Paudice, Massimiliano Pontil:
A Perturbation Resilient Framework for Unsupervised Learning. CoRR abs/2012.07399 (2020)
2010 – 2019
- 2019
- [j36]Patrick L. Combettes, Andrew M. McDonald, Charles A. Micchelli, Massimiliano Pontil:
Learning with optimal interpolation norms. Numer. Algorithms 81(2): 695-717 (2019) - [j35]Michele Donini, João M. Monteiro, Massimiliano Pontil, Tim Hahn, Andreas J. Fallgatter, John Shawe-Taylor, Janaina Mourão Miranda:
Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important. NeuroImage 195: 215-231 (2019) - [j34]Octavio Antonio Villarreal-Magaña, Victor Barasuol, Marco Camurri, Luca Franceschi, Michele Focchi, Massimiliano Pontil, Darwin G. Caldwell, Claudio Semini:
Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs. IEEE Robotics Autom. Lett. 4(2): 2140-2147 (2019) - [c92]Luca Oneto, Michele Donini, Amon Elders, Massimiliano Pontil:
Taking Advantage of Multitask Learning for Fair Classification. AIES 2019: 227-237 - [c91]Andreas Maurer, Massimiliano Pontil:
Uniform concentration and symmetrization for weak interactions. COLT 2019: 2372-2387 - [c90]Luca Oneto, Michele Donini, Massimiliano Pontil:
PAC-Bayes and Fairness: Risk and Fairness Bounds on Distribution Dependent Fair Priors. ESANN 2019 - [c89]Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil:
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization. ICML 2019: 1566-1575 - [c88]Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He:
Learning Discrete Structures for Graph Neural Networks. ICML 2019: 1972-1982 - [c87]Giulia Luise, Dimitrios Stamos, Massimiliano Pontil, Carlo Ciliberto:
Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction. ICML 2019: 4193-4202 - [c86]Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto:
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm. NeurIPS 2019: 9318-9329 - [c85]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification. NeurIPS 2019: 12739-12750 - [c84]Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil:
Online-Within-Online Meta-Learning. NeurIPS 2019: 13089-13099 - [i38]Luca Oneto, Michele Donini, Massimiliano Pontil:
General Fair Empirical Risk Minimization. CoRR abs/1901.10080 (2019) - [i37]Andreas Maurer, Massimiliano Pontil:
Uniform concentration and symmetrization for weak interactions. CoRR abs/1902.01911 (2019) - [i36]Giulia Luise, Dimitris Stamos, Massimiliano Pontil, Carlo Ciliberto:
Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction. CoRR abs/1903.00667 (2019) - [i35]Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil:
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization. CoRR abs/1903.10399 (2019) - [i34]Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He:
Learning Discrete Structures for Graph Neural Networks. CoRR abs/1903.11960 (2019) - [i33]Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto:
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm. CoRR abs/1905.13194 (2019) - [i32]Luca Oneto, Michele Donini, Andreas Maurer, Massimiliano Pontil:
Learning Fair and Transferable Representations. CoRR abs/1906.10673 (2019) - [i31]Michele Donini, Luca Franceschi, Massimiliano Pontil, Orchid Majumder, Paolo Frasconi:
Scheduling the Learning Rate via Hypergradients: New Insights and a New Algorithm. CoRR abs/1910.08525 (2019) - 2018
- [j33]Peixi Peng, Yonghong Tian, Tao Xiang, Yaowei Wang, Massimiliano Pontil, Tiejun Huang:
Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning. IEEE Trans. Pattern Anal. Mach. Intell. 40(7): 1625-1638 (2018) - [j32]Julien Bohné, Yiming Ying, Stéphane Gentric, Massimiliano Pontil:
Learning local metrics from pairwise similarity data. Pattern Recognit. 75: 315-326 (2018) - [c83]Andreas Maurer, Massimiliano Pontil:
Empirical bounds for functions with weak interactions. COLT 2018: 987-1010 - [c82]Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, Massimiliano Pontil:
Bilevel Programming for Hyperparameter Optimization and Meta-Learning. ICML 2018: 1563-1572 - [c81]Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, Massimiliano Pontil:
Empirical Risk Minimization Under Fairness Constraints. NeurIPS 2018: 2796-2806 - [c80]Giulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto:
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance. NeurIPS 2018: 5864-5874 - [c79]Jordan Frécon, Saverio Salzo, Massimiliano Pontil:
Bilevel learning of the Group Lasso structure. NeurIPS 2018: 8311-8321 - [c78]Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Learning To Learn Around A Common Mean. NeurIPS 2018: 10190-10200 - [c77]Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Incremental Learning-to-Learn with Statistical Guarantees. UAI 2018: 457-466 - [i30]Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, Massimiliano Pontil:
Empirical Risk Minimization under Fairness Constraints. CoRR abs/1802.08626 (2018) - [i29]Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Incremental Learning-to-Learn with Statistical Guarantees. CoRR abs/1803.08089 (2018) - [i28]Alessandro Rudi, Leonard Wossnig, Carlo Ciliberto, Andrea Rocchetto, Massimiliano Pontil, Simone Severini:
Approximating Hamiltonian dynamics with the Nyström method. CoRR abs/1804.02484 (2018) - [i27]Giulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto:
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance. CoRR abs/1805.11897 (2018) - [i26]Luca Franceschi, Paolo Frasconi, Saverio Salzo, Massimiliano Pontil:
Bilevel Programming for Hyperparameter Optimization and Meta-Learning. CoRR abs/1806.04910 (2018) - [i25]Luca Franceschi, Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo, Paolo Frasconi:
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization and Meta-Learning. CoRR abs/1806.04941 (2018) - [i24]Octavio Antonio Villarreal-Magaña, Victor Barasuol, Marco Camurri, Michele Focchi, Luca Franceschi, Massimiliano Pontil, Darwin G. Caldwell, Claudio Semini:
Fast and Continuous Foothold Adaptation for Dynamic Locomotion through Convolutional Neural Networks. CoRR abs/1809.09759 (2018) - [i23]Luca Oneto, Michele Donini, Amon Elders, Massimiliano Pontil:
Taking Advantage of Multitask Learning for Fair Classification. CoRR abs/1810.08683 (2018) - 2017
- [c76]Pierre Alquier, The Tien Mai, Massimiliano Pontil:
Regret Bounds for Lifelong Learning. AISTATS 2017: 261-269 - [c75]Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:
On Hyperparameter Optimization in Learning Systems. ICLR (Workshop) 2017 - [c74]Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:
Forward and Reverse Gradient-Based Hyperparameter Optimization. ICML 2017: 1165-1173 - [c73]Leonardo Badino, Luca Franceschi, Raman Arora, Michele Donini, Massimiliano Pontil:
A Speaker Adaptive DNN Training Approach for Speaker-Independent Acoustic Inversion. INTERSPEECH 2017: 984-988 - [c72]Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil:
Consistent Multitask Learning with Nonlinear Output Relations. NIPS 2017: 1986-1996 - [i22]Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil:
Consistent Multitask Learning with Nonlinear Output Relations. CoRR abs/1705.08118 (2017) - [i21]Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Reexamining Low Rank Matrix Factorization for Trace Norm Regularization. CoRR abs/1706.08934 (2017) - [i20]Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, Leonard Wossnig:
Quantum machine learning: a classical perspective. CoRR abs/1707.08561 (2017) - [i19]Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:
A Bridge Between Hyperparameter Optimization and Larning-to-learn. CoRR abs/1712.06283 (2017) - 2016
- [j31]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
The Benefit of Multitask Representation Learning. J. Mach. Learn. Res. 17: 81:1-81:32 (2016) - [j30]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
New Perspectives on k-Support and Cluster Norms. J. Mach. Learn. Res. 17: 155:1-155:38 (2016) - [c71]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
Fitting Spectral Decay with the k-Support Norm. AISTATS 2016: 1061-1069 - [c70]Peixi Peng, Tao Xiang, Yaowei Wang, Massimiliano Pontil, Shaogang Gong, Tiejun Huang, Yonghong Tian:
Unsupervised Cross-Dataset Transfer Learning for Person Re-identification. CVPR 2016: 1306-1315 - [c69]Julien Bohné, Sylvain Colin, Stéphane Gentric, Massimiliano Pontil:
Similarity Function Learning with Data Uncertainty. ICPRAM 2016: 131-140 - [c68]Michele Donini, David Martínez-Rego, Martin Goodson, John Shawe-Taylor, Massimiliano Pontil:
Distributed variance regularized Multitask Learning. IJCNN 2016: 3101-3109 - [c67]Michele Donini, João M. Monteiro, Massimiliano Pontil, John Shawe-Taylor, Janaina Mourão Miranda:
A multimodal multiple kernel learning approach to Alzheimer's disease detection. MLSP 2016: 1-6 - [c66]Mark Herbster, Stephen Pasteris, Massimiliano Pontil:
Mistake Bounds for Binary Matrix Completion. NIPS 2016: 3954-3962 - [i18]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
Fitting Spectral Decay with the $k$-Support Norm. CoRR abs/1601.00449 (2016) - [i17]Andreas Maurer, Massimiliano Pontil:
Bounds for Vector-Valued Function Estimation. CoRR abs/1606.01487 (2016) - [i16]Pierre Alquier, The Tien Mai, Massimiliano Pontil:
Regret Bounds for Lifelong Learning. CoRR abs/1610.08628 (2016) - 2015
- [j29]Mark Herbster, Stephen Pasteris, Massimiliano Pontil:
Predicting a switching sequence of graph labelings. J. Mach. Learn. Res. 16: 2003-2022 (2015) - [c65]Dimitris Stamos, Samuele Martelli, Moin Nabi, Andrew M. McDonald, Vittorio Murino, Massimiliano Pontil:
Learning with dataset bias in latent subcategory models. CVPR 2015: 3650-3658 - [i15]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
The Benefit of Multitask Representation Learning. CoRR abs/1505.06279 (2015) - [i14]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
New Perspectives on $k$-Support and Cluster Norms. CoRR abs/1512.08204 (2015) - [i13]Trevor Darrell, Marius Kloft, Massimiliano Pontil, Gunnar Rätsch, Erik Rodner:
Machine Learning with Interdependent and Non-identically Distributed Data (Dagstuhl Seminar 15152). Dagstuhl Reports 5(4): 18-55 (2015) - 2014
- [j28]Jair Montoya-Martínez, Antonio Artés-Rodríguez, Massimiliano Pontil, Lars Kai Hansen:
A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem. EURASIP J. Adv. Signal Process. 2014: 97 (2014) - [c64]Jair Montoya-Martínez, Antonio Artés-Rodríguez, Massimiliano Pontil:
Structured sparse-low rank matrix factorization for the EEG inverse problem. CIP 2014: 1-6 - [c63]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
An Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning. COLT 2014: 440-460 - [c62]Julien Bohné, Yiming Ying, Stéphane Gentric, Massimiliano Pontil:
Large Margin Local Metric Learning. ECCV (2) 2014: 679-694 - [c61]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
Spectral k-Support Norm Regularization. NIPS 2014: 3644-3652 - [i12]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
An Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning. CoRR abs/1402.1864 (2014) - 2013
- [j27]Charles A. Micchelli, Jean Morales, Massimiliano Pontil:
Regularizers for structured sparsity. Adv. Comput. Math. 38(3): 455-489 (2013) - [c60]Andreas Argyriou, Luca Baldassarre, Charles A. Micchelli, Massimiliano Pontil:
On Sparsity Inducing Regularization Methods for Machine Learning. Empirical Inference 2013: 205-216 - [c59]Massimiliano Pontil, Andreas Maurer:
Excess risk bounds for multitask learning with trace norm regularization. COLT 2013: 55-76 - [c58]Bernardino Romera-Paredes, Min S. H. Aung, Massimiliano Pontil, Nadia Bianchi-Berthouze, Amanda C. de C. Williams, Paul J. Watson:
Transfer learning to account for idiosyncrasy in face and body expressions. FG 2013: 1-6 - [c57]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
Sparse coding for multitask and transfer learning. ICML (2) 2013: 343-351 - [c56]Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, Massimiliano Pontil:
Multilinear Multitask Learning. ICML (3) 2013: 1444-1452 - [c55]Bernardino Romera-Paredes, Massimiliano Pontil:
A New Convex Relaxation for Tensor Completion. NIPS 2013: 2967-2975 - [c54]David Martínez-Rego, Massimiliano Pontil:
Multi-task Averaging via Task Clustering. SIMBAD 2013: 148-159 - [i11]Andreas Argyriou, Luca Baldassarre, Charles A. Micchelli, Massimiliano Pontil:
On Sparsity Inducing Regularization Methods for Machine Learning. CoRR abs/1303.6086 (2013) - [i10]Bernardino Romera-Paredes, Massimiliano Pontil:
A New Convex Relaxation for Tensor Completion. CoRR abs/1307.4653 (2013) - 2012
- [j26]David T. Jones, Daniel W. A. Buchan, Domenico Cozzetto, Massimiliano Pontil:
PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinform. 28(2): 184-190 (2012) - [j25]Andreas Maurer, Massimiliano Pontil:
Structured Sparsity and Generalization. J. Mach. Learn. Res. 13: 671-690 (2012) - [c53]Andreas Maurer, Massimiliano Pontil:
Transfer learning in a heterogeneous environment. CIP 2012: 1-6 - [c52]Jair Montoya-Martínez, Antonio Artés-Rodríguez, Lars Kai Hansen, Massimiliano Pontil:
Structured sparsity regularization approach to the EEG inverse problem. CIP 2012: 1-6 - [c51]Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massimiliano Pontil, Arthur Gretton:
Modelling transition dynamics in MDPs with RKHS embeddings. ICML 2012 - [c50]Steffen Grünewälder, Guy Lever, Arthur Gretton, Luca Baldassarre, Sam Patterson, Massimiliano Pontil:
Conditional mean embeddings as regressors. ICML 2012 - [c49]Arthur Gretton, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu:
Optimal kernel choice for large-scale two-sample tests. NIPS 2012: 1214-1222 - [c48]Luca Baldassarre, Janaina Mourão Miranda, Massimiliano Pontil:
Structured Sparsity Models for Brain Decoding from fMRI Data. PRNI 2012: 5-8 - [c47]Luca Baldassarre, Jean Morales, Andreas Argyriou, Massimiliano Pontil:
A General Framework for Structured Sparsity via Proximal Optimization. AISTATS 2012: 82-90 - [c46]Bernardino Romera-Paredes, Andreas Argyriou, Nadia Berthouze, Massimiliano Pontil:
Exploiting Unrelated Tasks in Multi-Task Learning. AISTATS 2012: 951-959 - [i9]Steffen Grünewälder, Guy Lever, Luca Baldassarre, Sam Patterson, Arthur Gretton, Massimiliano Pontil:
Conditional mean embeddings as regressors - supplementary. CoRR abs/1205.4656 (2012) - [i8]Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massimiliano Pontil, Arthur Gretton:
Modelling transition dynamics in MDPs with RKHS embeddings. CoRR abs/1206.4655 (2012) - [i7]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
Sparse coding for multitask and transfer learning. CoRR abs/1209.0738 (2012) - [i6]Andreas Maurer, Massimiliano Pontil:
Excess risk bounds for multitask learning with trace norm regularization. CoRR abs/1212.1496 (2012) - 2011
- [c45]Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, Massimiliano Pontil:
An Empirical Study of Geographic User Activity Patterns in Foursquare. ICWSM 2011 - [c44]Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, Massimiliano Pontil:
Exploiting Semantic Annotations for Clustering Geographic Areas and Users in Location-based Social Networks. The Social Mobile Web 2011 - [i5]Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil, Lixin Shen, Yuesheng Xu:
Efficient First Order Methods for Linear Composite Regularizers. CoRR abs/1104.1436 (2011) - [i4]Andreas Argyriou, Luca Baldassarre, Jean Morales, Massimiliano Pontil:
A General Framework for Structured Sparsity via Proximal Optimization. CoRR abs/1106.5236 (2011) - [i3]Andreas Maurer, Massimiliano Pontil:
Structured Sparsity and Generalization. CoRR abs/1108.3476 (2011) - [i2]Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil, Cecilia Mascolo:
A tale of many cities: universal patterns in human urban mobility. CoRR abs/1108.5355 (2011) - 2010
- [j24]Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:
On Spectral Learning. J. Mach. Learn. Res. 11: 935-953 (2010) - [j23]Augusto Maurer, Massimiliano Pontil:
K -Dimensional Coding Schemes in Hilbert Spaces. IEEE Trans. Inf. Theory 56(11): 5839-5846 (2010) - [c43]Charles A. Micchelli, Jean Morales, Massimiliano Pontil:
A Family of Penalty Functions for Structured Sparsity. NIPS 2010: 1612-1623
2000 – 2009
- 2009
- [j22]Andrea Caponnetto, Ernesto De Vito, Massimiliano Pontil:
Entropy conditions for L r -convergence of empirical processes. Adv. Comput. Math. 30(4): 355-373 (2009) - [j21]Stefano Lise, Cédric Archambeau, Massimiliano Pontil, David T. Jones:
Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinform. 10: 365 (2009) - [j20]Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:
When Is There a Representer Theorem? Vector Versus Matrix Regularizers. J. Mach. Learn. Res. 10: 2507-2529 (2009) - [c42]Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, Sara A. van de Geer:
Taking Advantage of Sparsity in Multi-Task Learning. COLT 2009 - [c41]Andreas Maurer, Massimiliano Pontil:
Empirical Bernstein Bounds and Sample-Variance Penalization. COLT 2009 - [p1]Francesca Odone, Massimiliano Pontil, Alessandro Verri:
Machine Learning Techniques for Biometrics. Handbook of Remote Biometrics 2009: 247-271 - 2008
- [j19]Yiming Ying, Massimiliano Pontil:
Online Gradient Descent Learning Algorithms. Found. Comput. Math. 8(5): 561-596 (2008) - [j18]Andrea Caponnetto, Charles A. Micchelli, Massimiliano Pontil, Yiming Ying:
Universal Multi-Task Kernels. J. Mach. Learn. Res. 9: 1615-1646 (2008) - [j17]Andreas Argyriou, Theodoros Evgeniou, Massimiliano Pontil:
Convex multi-task feature learning. Mach. Learn. 73(3): 243-272 (2008) - [c40]Andreas Maurer, Massimiliano Pontil:
A Uniform Lower Error Bound for Half-Space Learning. ALT 2008: 70-78 - [c39]Andreas Maurer, Massimiliano Pontil:
Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces. ALT 2008: 79-91 - [c38]Mark Herbster, Guy Lever, Massimiliano Pontil:
Online Prediction on Large Diameter Graphs. NIPS 2008: 649-656 - [c37]Mark Herbster, Massimiliano Pontil, Sergio Rojas Galeano:
Fast Prediction on a Tree. NIPS 2008: 657-664 - [c36]Andreas Argyriou, Andreas Maurer, Massimiliano Pontil:
An Algorithm for Transfer Learning in a Heterogeneous Environment. ECML/PKDD (1) 2008: 71-85 - [i1]Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:
When is there a representer theorem? Vector versus matrix regularizers. CoRR abs/0809.1590 (2008) - 2007
- [j16]Charles A. Micchelli, Massimiliano Pontil:
Feature space perspectives for learning the kernel. Mach. Learn. 66(2-3): 297-319 (2007) - [c35]Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil, Yiming Ying:
A Spectral Regularization Framework for Multi-Task Structure Learning. NIPS 2007: 25-32 - 2006
- [c34]Andreas Argyriou, Raphael Hauser, Charles A. Micchelli, Massimiliano Pontil:
A DC-programming algorithm for kernel selection. ICML 2006: 41-48 - [c33]Andreas Argyriou, Theodoros Evgeniou, Massimiliano Pontil:
Multi-Task Feature Learning. NIPS 2006: 41-48 - [c32]Mark Herbster, Massimiliano Pontil:
Prediction on a Graph with a Perceptron. NIPS 2006: 577-584 - 2005
- [j15]André Elisseeff, Theodoros Evgeniou, Massimiliano Pontil:
Stability of Randomized Learning Algorithms. J. Mach. Learn. Res. 6: 55-79 (2005) - [j14]Theodoros Evgeniou, Charles A. Micchelli, Massimiliano Pontil:
Learning Multiple Tasks with Kernel Methods. J. Mach. Learn. Res. 6: 615-637 (2005) - [j13]Charles A. Micchelli, Massimiliano Pontil:
Learning the Kernel Function via Regularization. J. Mach. Learn. Res. 6: 1099-1125 (2005) - [j12]Charles A. Micchelli, Massimiliano Pontil:
On Learning Vector-Valued Functions. Neural Comput. 17(1): 177-204 (2005) - [j11]Sauro Menchetti, Fabrizio Costa, Paolo Frasconi, Massimiliano Pontil:
Wide coverage natural language processing using kernel methods and neural networks for structured data. Pattern Recognit. Lett. 26(12): 1896-1906 (2005) - [c31]Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:
Learning Convex Combinations of Continuously Parameterized Basic Kernels. COLT 2005: 338-352 - [c30]Mark Herbster, Massimiliano Pontil, Lisa Wainer:
Online learning over graphs. ICML 2005: 305-312 - [c29]Andreas Argyriou, Mark Herbster, Massimiliano Pontil:
Combining Graph Laplacians for Semi-Supervised Learning. NIPS 2005: 67-74 - 2004
- [j10]Theodoros Evgeniou, Massimiliano Pontil, André Elisseeff:
Leave One Out Error, Stability, and Generalization of Voting Combinations of Classifiers. Mach. Learn. 55(1): 71-97 (2004) - [j9]Andrea Passerini, Massimiliano Pontil, Paolo Frasconi:
New results on error correcting output codes of kernel machines. IEEE Trans. Neural Networks 15(1): 45-54 (2004) - [c28]Charles A. Micchelli, Massimiliano Pontil:
A Function Representation for Learning in Banach Spaces. COLT 2004: 255-269 - [c27]Theodoros Evgeniou, Massimiliano Pontil:
Regularized multi--task learning. KDD 2004: 109-117 - [c26]Charles A. Micchelli, Massimiliano Pontil:
Kernels for Multi--task Learning. NIPS 2004: 921-928 - 2003
- [j8]Massimiliano Pontil:
A note on different covering numbers in learning theory. J. Complex. 19(5): 665-671 (2003) - [j7]Yuan Yao, Gian Luca Marcialis, Massimiliano Pontil, Paolo Frasconi, Fabio Roli:
Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines. Pattern Recognit. 36(2): 397-406 (2003) - [j6]Chikahito Nakajima, Massimiliano Pontil, Bernd Heisele, Tomaso A. Poggio:
Full-body person recognition system. Pattern Recognit. 36(9): 1997-2006 (2003) - [j5]Theodoros Evgeniou, Massimiliano Pontil, Constantine Papageorgiou, Tomaso A. Poggio:
Image Representations and Feature Selection for Multimedia Database Search. IEEE Trans. Knowl. Data Eng. 15(4): 911-920 (2003) - [c25]Massimiliano Pontil:
Reproducing kernels and regularization methods in machine learning. ESANN 2003: 185-196 - [c24]Michiko Yamana, Hiroyuki Nakahara, Massimiliano Pontil, Shun-ichi Amari:
On different ensembles of kernel machines. ESANN 2003: 197-201 - 2002
- [c23]Andrea Passerini, Massimiliano Pontil, Paolo Frasconi:
From Margins to Probabilities in Multiclass Learning Problems. ECAI 2002: 400-404 - [c22]Savina Andonova, André Elisseeff, Theodoros Evgeniou, Massimiliano Pontil:
A Simple Algorithm for Learning Stable Machines. ECAI 2002: 513-517 - [c21]Theodoros Evgeniou, Massimiliano Pontil:
Support Vector Machines with Clustering for Training with Very Large Datasets. SETN 2002: 346-354 - [c20]Chikahito Nakajima, Massimiliano Pontil:
Maintenance Training of Electric Power Facilities Using Object Recognition by SVM. SVM 2002: 112-119 - [c19]Theodoros Evgeniou, Massimiliano Pontil:
Learning Preference Relations from Data. WIRN 2002: 23-34 - [c18]Massimiliano Pontil:
A Short Review of Statistical Learning Theory. WIRN 2002: 233-242 - 2001
- [c17]Theodoros Evgeniou, Massimiliano Pontil:
Support Vector Machines: Theory and Applications. Machine Learning and Its Applications 2001: 249-257 - [c16]Yuan Yao, Gian Luca Marcialis, Massimiliano Pontil, Paolo Frasconi, Fabio Roli:
A New Machine Learning Approach to Fingerprint Classification. AI*IA 2001: 57-63 - [c15]Yuan Yao, Paolo Frasconi, Massimiliano Pontil:
Fingerprint Classification with Combinations of Support Vector Machines. AVBPA 2001: 253-258 - [c14]Bernd Heisele, Thomas Serre, Massimiliano Pontil, Tomaso A. Poggio:
Component-based Face Detection. CVPR (1) 2001: 657-662 - [c13]Bernd Heisele, Thomas Serre, Massimiliano Pontil, Thomas Vetter, Tomaso A. Poggio:
Categorization by Learning and Combining Object Parts. NIPS 2001: 1239-1245 - 2000
- [j4]Theodoros Evgeniou, Massimiliano Pontil, Tomaso A. Poggio:
Regularization Networks and Support Vector Machines. Adv. Comput. Math. 13(1): 1-50 (2000) - [j3]Theodoros Evgeniou, Massimiliano Pontil, Tomaso A. Poggio:
Statistical Learning Theory: A Primer. Int. J. Comput. Vis. 38(1): 9-13 (2000) - [c12]Theodoros Evgeniou, Massimiliano Pontil:
A Note on the Generalization Performance of Kernel Classifiers with Margin. ALT 2000: 306-315 - [c11]Massimiliano Pontil, Sayan Mukherjee, Federico Girosi:
On the Noise Model of Support Vector Machines Regression. ALT 2000: 316-324 - [c10]Theodoros Evgeniou, Luis Pérez-Breva, Massimiliano Pontil, Tomaso A. Poggio:
Bounds on the Generalization Performance of Kernel Machine Ensembles. ICML 2000: 271-278 - [c9]Chikahito Nakajima, Norihiko Itoh, Massimiliano Pontil, Tomaso A. Poggio:
Object Recognition and Detection by a Combination of Support Vector Machine and Rotation Invariant Phase Only Correlation. ICPR 2000: 4787-4790 - [c8]Chikahito Nakajima, Massimiliano Pontil, Tomaso A. Poggio:
People Recognition and Pose Estimation in Image Sequences. IJCNN (4) 2000: 189-196 - [c7]Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso A. Poggio, Vladimir Vapnik:
Feature Selection for SVMs. NIPS 2000: 668-674
1990 – 1999
- 1999
- [c6]Theodoros Evgeniou, Massimiliano Pontil:
On the Vgamma Dimension for Regression in Reproducing Kernel Hilbert Spaces. ALT 1999: 106-117 - [c5]Ryan M. Rifkin, Massimiliano Pontil, Alessandro Verri:
A Note on Support Vector Machine Degeneracy. ALT 1999: 252-263 - [c4]Massimiliano Pontil, Ryan M. Rifkin, Theodoros Evgeniou:
From regression to classification in support vector machines. ESANN 1999: 225-230 - [c3]N. Barabino, M. Pallavicini, Alessandro Petrolini, Massimiliano Pontil, Alessandro Verri:
Support vector machines vs multi-layer perceptrons in particle identification. ESANN 1999: 257-262 - 1998
- [j2]Massimiliano Pontil, Alessandro Verri:
Properties of Support Vector Machines. Neural Comput. 10(4): 955-974 (1998) - [j1]Massimiliano Pontil, Alessandro Verri:
Support Vector Machines for 3D Object Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 20(6): 637-646 (1998) - [c2]Massimiliano Pontil, Stefano Rogai, Alessandro Verri:
Recognizing 3-D Objects with Linear Support Vector Machines. ECCV (2) 1998: 469-483 - 1997
- [c1]Massimiliano Pontil, Alessandro Verri:
Direct Aspect-Based 3D Object Recognition. ICIAP (2) 1997: 300-307
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint