计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 143-148.doi: 10.11896/jsjkx.190100199
刘玉红,刘树英,付福祥
LIU Yu-hong,LIU Shu-ying,FU Fu-xiang
摘要: 压缩感知理论因其编码复杂度低、节省资源、抗干扰能力强等特点,被广泛应用于图像和视频信号处理。然而,传统的压缩感知技术也面临着重构时间长、算法复杂度高、迭代次数多、计算量大等问题。针对图像重构时间和重构质量的问题,文中提出一种新的卷积神经网络结构Combine Network (CombNet),它将压缩感知的测量值作为卷积神经网络的输入,连接一个全连接层,然后通过CombNet获得最终输出。实验结果表明,CombNet具有较低的复杂度及较好的恢复性能,在相同的采样率下,CombNet的峰值信噪比(PSNR)较TVAL3提高了7.2%~13.95%,较D-AMP提高了7.72%~174.84%。CombNet重构的耗时比传统重构算法提高了3个数量级,实现了实时重构。在采样率极低(采样率为0.01时)的情况下,CombNet的平均PSNR较D-AMP高出11.982dB,因此所提算法具有更好的视觉吸引力。
中图分类号:
[1]CANDES E J,ROMBERG J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509. [2]DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306. [3]WANG H L,WANG S,LIU W Y.An Overview of Compressed Sensing Implementation and Application[J].Journal of Detection & Control,2014,36(4). [4]MOUSAVI A,BARANIUK R G.Learning to Invert:Signal Recovery Via Deep ConvoLutional Networks[C]∥2017 IEEE International Conference on Acoustics,Speech and Signal Proces-sing (ICASSP).2017. [5]MALLAT S G,ZHANG Z.Matching pursuits with time-fre- quency dictionaries[J].IEEE Trans on Signal Processing,1993,41(12):3397-3415. [6]TROPP J A,GILBERT A C.Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666. [7]BLUMENSATH T,DAVIES M E.Iterative hard thresholding for compressed sensing[J].Applied & Computational Harmonic Analysis,2009,27(3):265-274. [8]FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing,2008,1(4):586-597. [9]MAIRAL J,BACH F,PONCE J,et al.Non-local sparse models for image restoration[C]∥IEEE International Conference on Computer Vision.2010. [10]ELDAR Y C,KUPPINGER P,BÖLCSKEI H.Block-Sparse Signals:Uncertainty Relations and Efficient Recovery[J].IEEE Transactions on Signal Processing,2010,58(6):3042-3054. [11]BARANIUK R G,CEVHER V,DUARTE M F,et al.Model-Based Compressive Sensing[J].IEEE Transactions on Information Theory,2010,56(4):1982-2001. [12]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,39(4):640-651. [13]EIGEN D,PUHRSCH C,FERGUS R.Depth Map Prediction from a Single Image using a Multi-Scale Deep Networ[J].ar-Xiv:1406.2283v1. [14]CHAO D,HE K,CHEN C L,et al.Learning a Deep Convolutional Network for Image Super-Resolution[C]∥European Conference on Computer Vision.Cham:Springer,2014. [15]XIE J Y,XU L L,CHEN E H.Image denoising and inpainting with deep neural networks[C]∥International Conference on Neural Information Processing Systems.2012:341-349. [16]MOUSAVI A,PATEL A B,BARANIUK R G.A deep learning approach to structured signal recovery[C]∥2015 53rd Annual Allerton Conference on Communication,Control,and Computing (Allerton).IEEE,2015:1336-1343. [17]KULKARNI K,LOHIT S,TURAGA P,et al.ReconNet:Non-Iterative Reconstruction of Images from Compressively Sensed Measurements[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE Computer Society,Las Vegas,NV,2016. [18]LI Y D,HAO Z B,LEI H.Survey of convolutional neural network[J].Journal of Computer Application,2016,36(9):2508-2515. [19]TAQI A M,AL-AZZO F,MARIOFANNA M,et al.Classification and discrimination of focal and non-focal EEG signals based on deep neural network[C]∥International Conference on Current Research in Computer Science & Information Technology.2017:8692. [20]JIA Y Q,SHELHAMER E,DONAHUE J,et al.Caffe:Convolutional Architecture for Fast Feature Embedding[C]∥ACM International Conference on Multimedia.2014. [21]LI C B,YIN W T,JIANG H,et al.An efficient augmented Lagrangian method with applications to total variation minimization[J].Computational Optimization and Applications,2013,56(3):507-530. [22]METZLER C A,MALEKI A,BARANIUK R G.From Denoi- sing to Compressed Sensing[J].IEEE Transactions on Information Theory,2016,62(9):5117-5144. [23]DABOV K,FOI A,KATKOVNIK V,et al.Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. |
[1] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[2] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[3] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[4] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[5] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[6] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[7] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[8] | 刘月红, 牛少华, 神显豪. 基于卷积神经网络的虚拟现实视频帧内预测编码 Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network 计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179 |
[9] | 徐鸣珂, 张帆. Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法 Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition 计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085 |
[10] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[11] | 杨玥, 冯涛, 梁虹, 杨扬. 融合交叉注意力机制的图像任意风格迁移 Image Arbitrary Style Transfer via Criss-cross Attention 计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236 |
[12] | 杨健楠, 张帆. 一种结合双注意力机制和层次网络结构的细碎农作物分类方法 Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure 计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169 |
[13] | 王杉, 徐楚怡, 师春香, 张瑛. 基于CNN-LSTM的卫星云图云分类方法研究 Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM 计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177 |
[14] | 孙福权, 崔志清, 邹彭, 张琨. 基于多尺度特征的脑肿瘤分割算法 Brain Tumor Segmentation Algorithm Based on Multi-scale Features 计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217 |
[15] | 吴子斌, 闫巧. 基于动量的映射式梯度下降算法 Projected Gradient Descent Algorithm with Momentum 计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039 |
|