Computer Science > Computation and Language
[Submitted on 21 May 2024 (v1), last revised 29 May 2024 (this version, v2)]
Title:Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text
View PDF HTML (experimental)Abstract:AI-generated text detection has attracted increasing attention as powerful language models approach human-level generation. Limited work is devoted to detecting (partially) AI-paraphrased texts. However, AI paraphrasing is commonly employed in various application scenarios for text refinement and diversity. To this end, we propose a novel detection framework, paraphrased text span detection (PTD), aiming to identify paraphrased text spans within a text. Different from text-level detection, PTD takes in the full text and assigns each of the sentences with a score indicating the paraphrasing degree. We construct a dedicated dataset, PASTED, for paraphrased text span detection. Both in-distribution and out-of-distribution results demonstrate the effectiveness of PTD models in identifying AI-paraphrased text spans. Statistical and model analysis explains the crucial role of the surrounding context of the paraphrased text spans. Extensive experiments show that PTD models can generalize to versatile paraphrasing prompts and multiple paraphrased text spans. We release our resources at this https URL.
Submission history
From: Yafu Li [view email][v1] Tue, 21 May 2024 11:22:27 UTC (5,278 KB)
[v2] Wed, 29 May 2024 07:09:59 UTC (5,285 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.