# coding: utf-8 #from google.colab import drive import tensorflow as tf import tensorflow_datasets as tfds import numpy as np import matplotlib.pyplot as plt import time import itertools # *Python Machine Learning 3rd Edition* by [Sebastian Raschka](https://sebastianraschka.com) & [Vahid Mirjalili](http://vahidmirjalili.com), Packt Publishing Ltd. 2019 # # Code Repository: https://github.com/rasbt/python-machine-learning-book-3rd-edition # # Code License: [MIT License](https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/LICENSE.txt) # Chapter 17: Generative Adversarial Networks (part 2/2) # ===== # Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). # # Improving the quality of synthesized images using a convolutional and Wasserstein GAN # ## Transposed convolution # ## Batch normalization # ## Implementing the generator and discriminator # * **Setting up the Google Colab** #! pip install -q tensorflow-gpu==2.0.0-beta1 #drive.mount('/content/drive/') #import tensorflow as tf #print("GPU Available: ", tf.test.is_gpu_available()) #device_name = tf.test.gpu_device_name() #device_name def make_dcgan_generator(z_size=20, output_size=(28, 28, 1), n_filters=128, n_blocks=2): size_factor = 2**n_blocks hidden_size = (output_size[0]//size_factor, output_size[1]//size_factor) model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(z_size,)), tf.keras.layers.Dense( units=n_filters*np.prod(hidden_size), use_bias=False), tf.keras.layers.BatchNormalization(), tf.keras.layers.LeakyReLU(), tf.keras.layers.Reshape( (hidden_size[0], hidden_size[1], n_filters)), tf.keras.layers.Conv2DTranspose( filters=n_filters, kernel_size=(5, 5), strides=(1, 1), padding='same', use_bias=False), tf.keras.layers.BatchNormalization(), tf.keras.layers.LeakyReLU() ]) nf = n_filters for i in range(n_blocks): nf = nf // 2 model.add(tf.keras.layers.Conv2DTranspose( filters=nf, kernel_size=(5, 5), strides=(2, 2), padding='same', use_bias=False)) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose( filters=output_size[2], kernel_size=(5, 5), strides=(1, 1), padding='same', use_bias=False, activation='tanh')) return model def make_dcgan_discriminator(input_size=(28, 28, 1), n_filters=64, n_blocks=2): model = tf.keras.Sequential([ tf.keras.layers.Input(shape=input_size), tf.keras.layers.Conv2D( filters=n_filters, kernel_size=5, strides=(1, 1), padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.LeakyReLU() ]) nf = n_filters for i in range(n_blocks): nf = nf*2 model.add(tf.keras.layers.Conv2D( filters=nf, kernel_size=(5, 5), strides=(2, 2),padding='same')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Conv2D( filters=1, kernel_size=(7, 7), padding='valid')) model.add(tf.keras.layers.Reshape((1,))) return model gen_model = make_dcgan_generator() gen_model.summary() disc_model = make_dcgan_discriminator() disc_model.summary() # ## Dissimilarity measures between two distributions # ## Using EM distance in practice for GANs # ## Gradient penalty # ## Implementing WGAN-GP to train the DCGAN model mnist_bldr = tfds.builder('mnist') mnist_bldr.download_and_prepare() mnist = mnist_bldr.as_dataset(shuffle_files=False) def preprocess(ex, mode='uniform'): image = ex['image'] image = tf.image.convert_image_dtype(image, tf.float32) image = image*2 - 1.0 if mode == 'uniform': input_z = tf.random.uniform(shape=(z_size,), minval=-1.0, maxval=1.0) elif mode == 'normal': input_z = tf.random.normal(shape=(z_size,)) return input_z, image num_epochs = 100 batch_size = 64 image_size = (28, 28) z_size = 20 mode_z = 'uniform' gen_hidden_layers = 1 gen_hidden_size = 100 disc_hidden_layers = 1 disc_hidden_size = 100 tf.random.set_seed(1) np.random.seed(1) if mode_z == 'uniform': fixed_z = tf.random.uniform( shape=(batch_size, z_size), minval=-1, maxval=1) elif mode_z == 'normal': fixed_z = tf.random.normal( shape=(batch_size, z_size)) def create_samples(g_model, input_z): g_output = g_model(input_z, training=False) images = tf.reshape(g_output, (batch_size, *image_size)) return (images+1)/2.0 ## Set-up the dataset mnist_trainset = mnist['train'] mnist_trainset = mnist_trainset.map( lambda ex: preprocess(ex, mode=mode_z)) input_z, input_real = next(iter(mnist_trainset)) mnist_trainset = mnist_trainset.shuffle(10000) mnist_trainset = mnist_trainset.batch( batch_size, drop_remainder=True) ## Set-up the model with tf.device(device_name): gen_model = make_dcgan_generator() gen_model.build(input_shape=(None, z_size)) disc_model = make_dcgan_discriminator() disc_model.build(input_shape=(None, np.prod(image_size))) ## Loss function and optimizers: loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True) g_optimizer = tf.keras.optimizers.Adam() d_optimizer = tf.keras.optimizers.Adam() avg_epoch_losses = [] avg_d_vals = [] epoch_samples = [] start_time = time.time() for epoch in range(1, num_epochs+1): losses = [] for i,(input_z,input_real) in enumerate(mnist_trainset): ## Compute discriminator's real-loss and its gradients: with tf.GradientTape() as d_tape_real: d_logits_real = disc_model(input_real, training=True) d_labels_real = tf.ones_like(d_logits_real)# * smoothing_factor d_loss_real = loss_fn(y_true=d_labels_real, y_pred=d_logits_real) d_grads_real = d_tape_real.gradient( d_loss_real, disc_model.trainable_variables) ## Optimization: Apply the gradients d_optimizer.apply_gradients( grads_and_vars=zip(d_grads_real, disc_model.trainable_variables)) ## Compute generator's loss and its gradients: with tf.GradientTape() as g_tape: g_output = gen_model(input_z) d_logits_fake = disc_model(g_output, training=True) labels_real = tf.ones_like(d_logits_fake) g_loss = loss_fn(y_true=labels_real, y_pred=d_logits_fake) g_grads = g_tape.gradient(g_loss, gen_model.trainable_variables) g_optimizer.apply_gradients( grads_and_vars=zip(g_grads, gen_model.trainable_variables)) ## Compute discriminator's fake-loss and its gradients: with tf.GradientTape() as d_tape_fake: d_logits_fake = disc_model(g_output.numpy(), training=True) d_labels_fake = tf.zeros_like(d_logits_fake) d_loss_fake = loss_fn(y_true=d_labels_fake, y_pred=d_logits_fake) d_grads_fake = d_tape_fake.gradient( d_loss_fake, disc_model.trainable_variables) ## Optimization: Apply the gradients d_optimizer.apply_gradients( grads_and_vars=zip(d_grads_fake, disc_model.trainable_variables)) d_loss = (d_loss_real + d_loss_fake)/2.0 losses.append( (g_loss.numpy(), d_loss.numpy(), d_loss_real.numpy(), d_loss_fake.numpy())) d_probs_real = tf.reduce_mean(tf.sigmoid(d_logits_real)) d_probs_fake = tf.reduce_mean(tf.sigmoid(d_logits_fake)) avg_d_vals.append((d_probs_real.numpy(), d_probs_fake.numpy())) avg_epoch_losses.append(np.mean(losses, axis=0)) print('Epoch {:-3d} | ET {:.2f} min | Avg Losses >>' ' G/D {:.4f}/{:.4f} [D-Real: {:.4f} D-Fake: {:.4f}]' .format(epoch, (time.time() - start_time)/60, *list(avg_epoch_losses[-1]))) epoch_samples.append(create_samples( gen_model, num_samples=8).numpy()) #import pickle #pickle.dump({'all_losses':all_losses, # 'samples':epoch_samples}, # open('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-WDCGAN-learning.pkl', 'wb')) #gen_model.save('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-WDCGAN-gan_gen.h5') #disc_model.save('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-WDCGAN-gan_disc.h5') fig = plt.figure(figsize=(8, 6)) ## Plotting the losses ax = fig.add_subplot(1, 1, 1) g_losses = [item[0] for item in itertools.chain(*all_losses)] d_losses = [item[1] for item in itertools.chain(*all_losses)] plt.plot(g_losses, label='Generator loss', alpha=0.95) plt.plot(d_losses, label='Discriminator loss', alpha=0.95) plt.legend(fontsize=20) ax.set_xlabel('Iteration', size=15) ax.set_ylabel('Loss', size=15) epochs = np.arange(1, 101) epoch2iter = lambda e: e*len(all_losses[-1]) epoch_ticks = [1, 20, 40, 60, 80, 100] newpos = [epoch2iter(e) for e in epoch_ticks] ax2 = ax.twiny() ax2.set_xticks(newpos) ax2.set_xticklabels(epoch_ticks) ax2.xaxis.set_ticks_position('bottom') ax2.xaxis.set_label_position('bottom') ax2.spines['bottom'].set_position(('outward', 60)) ax2.set_xlabel('Epoch', size=15) ax2.set_xlim(ax.get_xlim()) ax.tick_params(axis='both', which='major', labelsize=15) ax2.tick_params(axis='both', which='major', labelsize=15) #plt.savefig('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-wdcgan-learning-curve.pdf') plt.show() selected_epochs = [1, 2, 4, 10, 50, 100] fig = plt.figure(figsize=(10, 14)) for i,e in enumerate(selected_epochs): for j in range(5): ax = fig.add_subplot(6, 5, i*5+j+1) ax.set_xticks([]) ax.set_yticks([]) if j == 0: ax.text(-0.06, 0.5, 'Epoch {}'.format(e), rotation=90, size=18, color='red', horizontalalignment='right', verticalalignment='center', transform=ax.transAxes) image = epoch_samples[e-1][j] ax.imshow(image, cmap='gray_r') #plt.savefig('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-wdcgan-samples.pdf') plt.show() # ## Mode collapse