
Awk:
Hack the planet['s text]!

(Updated for 2023)

Ben Porter

Outline
● What is awk?
● Why learn awk?
● History of awk
● Super simple awk programs
● Awk Patterns Overview
● Awk Actions Overview
● Dive a Little Deeper (functions, pipes)
● Example programs

Updated: Syntax Highlighting

made with Peek and lolcat

What is Awk?
● A powerful, succinct scripting language for text processing
● More formally, Awk is a data-driven scripting language consisting of a set of

actions to be taken against streams of textual data for purposes of extracting
or transforming text, such as producing formatted reports

● Written by Alfred Aho, Peter Weinberger, and Brian Kernighan
● Initially developed in 1977

● Source: https://en.wikipedia.org/wiki/AWK

https://en.wikipedia.org/wiki/AWK

What is Awk?
● Awk was significantly revised and expanded in 1985–88 into GNU Awk
● GNU Awk (gawk) written by Paul Rubin, Jay Fenlason, and Richard Stallman
● gawk is most widely deployed version
● gawk has been maintained solely by Arnold Robbins since 1994
● Brian Kernighan's nawk (New AWK) source was first released in 1993

unpublicized, and publicly since the late 1990s;
● Many BSD systems use nawk to avoid the GPL license (but their users

always install gawk ;-))

● Source: https://en.wikipedia.org/wiki/AWK

https://en.wikipedia.org/wiki/AWK

Is awk a programming language?

● Awk is a command line tool, but
more so than grep and others it is
also a programming language!

● It’s not a general purpose language.
It’s optimized for text processing

● But, it is Turing complete!

Why Learn Awk?
This is an excellent question! There are many good reasons:

● Awk is part of Posix, so it is installed everywhere
● Many of the problems you face are text processing problems
● Awk is the gold standard of text processing tools
● Awk will make you powerful
● People are impressed with those that use awk
● All real hackers use awk
● Awk is really pretty easy to learn! (seriously)

History of Awk
Before Awk:

● Was preceded by sed, which was the scripting part of ed
● Sed was the first powerful regex tool
● Used main loop and current line variables (awk expanded on this)
● Awk was an evolution in the sed line-oriented approach

After Awk:

● Awk’s powerful regexes and also its limitations inspired Perl,
● Perl in turn inspired beautiful languages like Ruby which inspired Elixir
● We have a lot to thank awk for!

The Traditional “Hello World” in awk

● BEGIN { print "Hello, world!" }

Running an awk program

● Several different ways to invoke an awk program:

● awk 'program' input files # Pass awk code as a string arg

● awk -f progfile input files # Pass awk code in a file

● some_command | awk 'program' # Pass awk code as a string arg

Running an awk program

● You can even use a #! (she-bang) in a *nix script:

● #!/usr/bin/env awk -f

BEGIN { print "Hello, world!" }

● ./script.awk *.log

Structure of an awk program
● pattern { action }

Structure of an awk program
● pattern { action }

● Awk scans a sequence of input lines one after another searching for lines that
are matched.

● Every input line is tested against each pattern in turn
● For each match, the { action } is executed
● After every applicable { action } is executed, the next line is processed
● Action are enclosed in braces to distinguish them from the pattern

Structure of an awk program
● Either the pattern or the action can be omitted

● If the pattern is omitted, every line will automatically match
● It is essentially the equivalent of:

/.*/ { action }

● If the action is omitted, every line matching the regex will be printed
● It is essentially the equivalent of:

/some-regex/ { print $0 }

Awk Patterns
● Awk patterns are basically just “if” statements to decide to execute the action
● Decide if a match is True or False
● If True, execute the following Action
● If False, skip the action and proceed to test the next pattern with current line

(Types)

Awk Patterns
Examples:

NF < 10 # Num Fields

NR <= 150 # Num Records

$1 == "SomeString"

$4 ~ /linux/ (or "linux")

$5 !~ /awk/

$2/$3 >= 0.5

Awk Patterns

implies “$0 ~”

Awk Patterns

Awk Range Patterns
● A range pattern consists of two patterns separated by a comma
● A range pattern matches each line between an occurrence of pattern 1 and

the next occurrence of pattern 2 inclusive
● If no instance of the second pattern is subsequently found, then all lines to the

end of the input are matched

● Example - Apply { action } to lines 1 through 10:

NR == 1, NR == 10 { print $0 }

Awk Patterns Summary

(Regex)

Structure of an awk program
● Either the pattern or the action can be omitted

● If the pattern is omitted, every line will automatically match
● It is essentially the equivalent of:

/.*/ { action }

● If the action is omitted, every line matching the regex will be printed
● It is essentially the equivalent of:

/some-regex/ { print $0 }

Awk Actions
● Executed if the pattern matches (if if there was no pattern)
● Are much like a typical language (such as C)
● Have access to a number of built in variables
● Can create variables or call functions (such as print)
● Parenthesis in function calls are optional
● Can override fields or create new fields

The simplest awk programs
● You’ve probably seen this before:

○ awk '{ print $2 }'

● Or maybe this:
○ awk `$3 == 10`

The simplest awk programs
● Print every line (not really helpful in the real world. This is just a

reimplementation of “cat”)
○ awk '{ print }'

● Equivalent to
○ awk '{ print $0 }'

The simplest awk programs
● Print some columns

○ awk '{ print $1, $3 }'

● Do some column math
○ awk '{ print $1, $2 * $3 }'

Magic variables!
● Print number of fields (columns)

○ awk '{ print NF }'

● Print number of lines read (basically line numbers)
○ awk '{ print NR, $0 }'

Add text to the output!
● Print number of fields (columns)

○ awk '{ print $1 "makes" $3 "per hour" }'

● More control with printf instead of print
○ awk '{ printf("%s makes $%.2f per hour\n", $1, $3) }'

Combine with other tools like sort and uniq
● Sort the output by $ per hour (3rd column)

○ awk '{ print $1 "makes" $3 "per hour" }' | sort -nk 3

● Filter on unique wages
○ awk '{ print $1 "makes" $3 "per hour" }' | uniq -f 2

Built-in Math Functions

String functions
Implicit argument is $0 (the whole line):

{ gsub(/USA/, "United States"); print } # implicit arguments

More examples:

X = sprintf("%10s, %6d", $1, $2)

gsub(/ana/, "anda", "banana") # explicit arguments

String Concatenation
Simply put two strings together:

Example: Concatenate fields 2 and 3:

print $2 $3

Concatenate:

print "hello" "world"

Outputs: "helloworld"

Types
Strings

"String literal"

Numbers:

+1 1. 0 1e0 0. 1e+ 1 10E-1 001

Types will be automatically coerced when needed.

Control Flow
● Most standard control flow is supported
● Syntax is like C
● if/else
● while
● for

Control Flow examples

{

 i = 1

 while (i <= NF) {

 print $i

 i++

 }

}

{

 for (i = 1; i<= NF; i++)

 print $i

}

Printf % characters

Going Deeper
● We can write to files directly from awk:

(pattern) { print "expression" > "file name" }

● We can also pipe:

(pattern) { print "expression" | "command" }

Going Deeper
● We can write to files directly from awk:

(pattern) { print "expression" > "file name" }

● We can also pipe:

(pattern) { print "expression" | "command" }

Going Deeper - Variables
● We can also create and set variables:

{

 w += NF

 c = length + 1

}

We can call functions
● Count words in the input and print the number of lines,

words, and characters (like wc):

{

 w += NF

 c += length + 1

}

END { print NR, w, c }

And Define Functions
● We can also define our own functions:

function add_three (number) {

 return number + 3

 }

(pattern) { print add_three(36) } # Outputs '''39'''

Going Deeper - Arrays
● Arrays are one dimensional
● For Strings or Numbers
● Arrays and elements do not need to be declared
● All arrays are associative
● Iterate with: for (variable in array)
● Delete element: delete array[subscript]
● Set or replace element (string key): Array["one"] = 2
● Set or replace element (integer key): Array[5] = "two"
● Even with an integer key, the array is still associative!

Going Deeper - Field Manipulation
● Fields can be specified by expression:

$(NF-1) is second to last, $NF is last, etc.

● A field variable referencing a non-existent field can be created through
assignment. Initial value is empty string:

$(NF+1) = $(NF-1) / 1000

Going Deeper - Self-contained Scripts
#!/usr/bin/awk -f

{ print $0 }

It can be invoked with: ./print.awk <filename>

The -f tells AWK that the argument that follows is the file to read the AWK program
from, which is the same flag that is used in sed. Since they are often used for
one-liners, both these programs default to executing a program given as a
command-line argument, rather than a separate file.

Some weird Awk stuff
What??

awk '{$1=$1}1' file.txt

It removes leading space. Easier to read (but more verbose) written as:

awk '{ $1=$1 }; { print }' file.txt

More verbose, but entirely explicit:

awk '/.*/ { $1=$1 }; /.*/ { print $0 }' file.txt

An Awk file server! (Yes this really works)
awk '@load"filefuncs";@load"readfile";func

send(s,e,d,t,b){print"HTTP/1.0 "s" "e|&S;print"Content-Length:

"b|&S;print"Content-Type: "t|&S;print d|&S;close(S);}func

cf(x){split(x,y,"/");for(z in y){print "FOUND

"y[z];if(y[z]==".."){return 0;}}return 1;}func mt(f){c="file -b

--mime-type "f;r="";while((c|getline z)>0){r=r z;}close(c);return

r;}BEGIN{if(ARGV[1]!=""){if(chdir(ARGV[1])){print "Failed to chdir to

"ARGV[1];exit;}ARGC=1;}RS=ORS="\r\n";while(1){S="/inet/tcp/8080/0/0";w

hile((S|&getline l)>0){split(l,f,"

");if(f[1]=="GET"){p=substr(f[2],2)}if(p==""){p="index.html"}stat(p,s)

;if(cf(p)&&s["type"]=="file"){m=mt(p);o=readfile(p);send(200,"OK",o,m,

s["size"]);break;}n="<html>Not Found</html>";send(404,"Not

Found",n,"text/html"RS,length(n));break;}}}'

References
● The AWK Programming Language 1st Edition: Alfred V. Aho, Brian W.

Kernighan, Peter J. Weinberger
● Awk Tutorial (2016): Jonathan Palardy -

https://blog.jpalardy.com/posts/awk-tutorial-part-1/
● Awk (2019): Wikipedia - https://en.wikipedia.org/wiki/AWK

● Image Credits
○ Diagrams were created by me using diagrams.net
○ Some images created by the amazing Vanessa Porter
○ DALL-E and Stable DIffusion were also used to generate some images. Most were touched

up/altered by me to better fit

https://blog.jpalardy.com/posts/awk-tutorial-part-1/
https://en.wikipedia.org/wiki/AWK

Challenges
Source: https://github.com/FreedomBen/awk-hack-the-planet

Scenario: The boss has given us a tsv file full of payroll data, and she would like
us to run some analysis on it. We recently learned about `awk` and it's amazing
processing power, and have decided this is an awesome chance to use our new
skillz!

You should primarily use awk, but you can (and should) combine with other tools
(like sort, uniq) when it makes sense. Don’t use grep or sed tho since awk can
handle the same scenarios(and you are trying to learn awk after all) :-)

https://github.com/FreedomBen/awk-hack-the-planet

Challenges - 01
Q. How much money per hour does the janitor make?

Challenges - 01
Q. How much money per hour does the janitor make?

Challenges - 02
Q. What is the name of the CEO? Format like "LastName, FirstName"?

Challenges - 02
Q. What is the name of the CEO? Format like "LastName, FirstName"?

Challenges - 03
Q. Which employees were hired on April 16, 1993? (Print the list)

Challenges - 03
Q. Which employees were hired on April 16, 1993? (Print the list)

Challenges - 04
Q. Which employee works in the Springfield office?

Challenges - 04
Q. Which employee works in the Springfield office?

Challenges - 05
Q. How many mechanical engineers work here?

Challenges - 05
Q. How many mechanical engineers work here?

Challenges - 06
Q. How many people from the Portwood family work here?

Challenges - 06
Q. How many people from the Portwood family work here?

Challenges - 07
Q. Are there any employees with identical first & last names?

Challenges - 07
Q. Are there any employees with identical first & last names?

Challenges - 08
Q. Print each column header, along with which column it is. E.g. The LastName
column is the second column, so print "2 - LastName"

Challenges - 08
Q. Print each column header, along with which column it is. E.g. The LastName
column is the second column, so print "2 - LastName"

Challenges - 09
Q. How much money per hour does the Seattle office cost?

Challenges - 09
Q. How much money per hour does the Seattle office cost?

Challenges - 10
Q. How many engineers (of any type) work here?

Challenges - 10
Q. How many engineers (of any type) work here?

Challenges - 11
Q. Who is the highest paid employee?

Challenges - 11
Q. Who is the highest paid employee?

Challenges - 11
Q. Who is the highest paid employee?

Challenges - 12
Q. Who worked the most hours this week?

Challenges - 12
Q. Who worked the most hours this week?

Challenges - 12
Q. Who worked the most hours this week?

Challenges - 13
Q. Anonymize the data by removing the first two columns. Print all remaining
columns

Challenges - 13
Q. Anonymize the data by removing the first two columns. Print all remaining
columns

Challenges - 13
Q. Anonymize the data by removing the first two columns. Print all remaining
columns

Challenges - 14
Q. Our client is complaining about the anonymized data before. It is too hard to
read. They would like you to add line numbers to the output.

Challenges - 14
Q. Our client is complaining about the anonymized data before. It is too hard to
read. They would like you to add line numbers to the output.

Challenges - 14
Q. Our client is complaining about the anonymized data before. It is too hard to
read. They would like you to add line numbers to the output.

Challenges - 15
Q. How many different office locations does the company have?

Challenges - 15
Q. How many different office locations does the company have?

Challenges - 16
Q. What is the average wage?

Challenges - 16

Challenges - 16
Q. What is the average wage?

Challenges - 17
Q. Are there any duplicate entries? (Same names appear more than once)

Challenges - 16
Q. Are there any duplicate entries? (Same names appear more than once)

Challenges - 17
Q. Are there any duplicate entries? (Same names appear more than once)

Challenges - 18
Q. Who was the first employee hired?

Challenges - 18
Q. Who was the first employee hired?

