Skip to content

Imshepherd/MxNetR-Convert-json-to-symbol

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MxNet Convert json to symbol

Convert network written in json format to mxnet symbol code

If you have a pretrained model in mxnet *.json format.

Using the Fine-tuning strategy to transfer learned recognition capabilities from general domains to the specific challenge.

You can use the example code below directly in the R console.

For example for the DesNet.

  Dense_model = mx.model.load('model/densenet-imagenet-169-0', 125)

  all_layers = Dense_model$symbol$get.internals()
  relu1_output = which(all_layers$outputs == 'relu1_output') %>% all_layers$get.output()
  softmax_output = which(all_layers$outputs == 'softmax_output') %>% all_layers$get.output()
  
  out = mx.symbol.Group(c(relu1_output, softmax_output))
  executor = mx.simple.bind(symbol = out, data = c(224, 224, 3, 1), ctx = mx.cpu())
  
  mx.exec.update.arg.arrays(executor, Dense_model$arg.params, match.name = TRUE)
  mx.exec.update.aux.arrays(executor, Dense_model$aux.params, match.name = TRUE)

And run the executor or train by other mxnet function.

Using symbol.get_internals to get the internal parts, can only get symbol from start.

When you want to use specific layers or

Changing some specific layers architecture in pre-train model.

You may rewrite the whole Net.

Or you may use function in '1. LeNet/3. convert json to symbol.R', converting json files to R code for the example of LeNet.

Also, there is an example of DesNet.

The example code in here'1. LeNet/3. convert json to symbol.R'

Pre-Train densenet model is downloading from

About

MxNet Convert json to symbol in R.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages