Skip to content
/ DAI-Net Public

[CVPR 2024] Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

Notifications You must be signed in to change notification settings

ZPDu/DAI-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Dec 14, 2024
f9f78ff Β· Dec 14, 2024

History

20 Commits
Feb 28, 2024
Jun 11, 2024
Apr 13, 2024
Apr 13, 2024
Jun 11, 2024
Nov 17, 2024
Dec 14, 2024
May 21, 2024
May 20, 2024
Jun 11, 2024

Repository files navigation

Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

Zhipeng Du Β· Miaojing Shi Β· Jiankang Deng

PyTorch implementation of Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation. (CVPR 2024) [Page | Paper]

overview

πŸ”¨ To-Do List

    • release the code regarding the proposed model and losses.
    • release the evaluation code, and the pretrained models.
    • release the training code.

πŸš€ Installation

Begin by cloning the repository and setting up the environment:

git clone https://github.com/ZPDu/DAI-Net.git
cd DAI-Net

conda create -y -n dainet python=3.7
conda activate dainet

pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html

pip install -r requirements.txt

πŸ“” Training

Data and Weight Preparation

Organize the folders as:

.
β”œβ”€β”€ utils
β”œβ”€β”€ weights
β”‚   β”œβ”€β”€ decomp.pth
β”‚   β”œβ”€β”€ vgg16_reducedfc.pth
β”œβ”€β”€ dataset
β”‚   β”œβ”€β”€ wider_face_train.txt
β”‚   β”œβ”€β”€ wider_face_val.txt
β”‚   β”œβ”€β”€ WiderFace
β”‚   β”‚   β”œβ”€β”€ WIDER_train
β”‚   β”‚   └── WIDER_val

Model Training

To train the model, run

python -m torch.distributed.launch --nproc_per_node=$NUM_OF_GPUS$ train.py

πŸ““ Evaluation​

On Dark Face:

  • Download the testing samples from UG2+ Challenge.
  • Download the checkpoints: DarkFaceZSDA (28.0) or DarkFaceFS (52.9, finetuned with full supervision).
  • Set (1) the paths of testing samples & checkpoint, (2) whether to use a multi-scale strategy, and run test.py.
  • Submit the results for benchmarking. (Detailed instructions).

On ExDark:

  • Our experiments are based on the codebase of MAET. You only need to replace the checkpoint with ours for evaluation.

πŸ“‘ Citation

If you find this work useful, please cite

@inproceedings{du2024boosting,
  title={Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation},
  author={Du, Zhipeng and Shi, Miaojing and Deng, Jiankang},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12666--12676},
  year={2024}
}

or

@article{du2023boosting,
  title={Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation},
  author={Du, Zhipeng and Shi, Miaojing and Deng, Jiankang},
  journal={arXiv preprint arXiv:2312.01220},
  year={2023}
}

πŸ”Ž Acknowledgement

We thank DSFD.pytorch, RetinexNet_PyTorch, MAET, HLA-Face for their amazing works!

About

[CVPR 2024] Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages