POLITECNICO DI MILANO - DEPARTMENT OF ELECTRONICS, INFORMATION AND BIOENGINEERING

POLITECNICO
MILANO 1863

RTL Router Design in SystemVerilog

[Coding Project]

Student
ID

Student
ID

Student
ID

Course
Academic Year

Advisor
Professor

Andrea Galimberti
875434

Filippo Testa
875456

Alberto Zeni
884540

Embedded Systems
2016-2017

Davide Zoni
William Fornaciari

November 13, 2017

Contents

1

Introduction

1.1 Problem statement
1.2 Summaryofthework

Design and implementation

2.1 CircularBuffer
2.2 InputBuffer
2.3 Route Computation Unit
24 InputPort...........
2.5 CrossbarSwitch
2.6 Round-Robin Arbiter
2.7 Separable Input-First Allocator
2.8 Virtual Channel Allocator
2.9 Switch Allocator
210Router
211 Mesh

Verification

3.1 CircularBuffer
3.2 InputBuffer
3.3 Route Computation Unit
34 InputPort....................
3.5 CrossbarSwitch
3.6 Round-Robin Arbiter
3.7 Separable Input-First Allocator
3.8 Virtual Channel Allocator
3.9 SwitchAllocator
3.10 Router Submodules Integration
311 Router
312Mesh
3.13 Verification Scenarios

3.13.1 Single Router Scenario

3.13.2 Two Routers Scenario

Router External Interface

4.1 Inputsand Outputs
4.2 Interfaces to Other Routers
4.2.1 Router-Router Interface Signals . .

4.2.2 Router-Router Interface Modports
Flit Encoding Scheme

Conclusions and Future Works

14
14
14
15
15

15

16

1 Introduction

1.1 Problem statement

Interconnection networks are used to interconnect either single or sets of components within a com-
puter system, or multiple computer systems; the interconnection aspect of computer architecture has
gained significant importance in recent years, with regard to the impact of different solutions on the
overall performance and cost of the whole system.

In addition to providing external connectivity, networks are commonly used to interconnect the com-
ponents within a single computer at many levels, including the processor micro-architecture; networks
have long been used in mainframes, but today such designs can be found in personal computers as well,
given the high demand on communication bandwidth needed to enable increased computing power
and storage capacity.

Switched networks are replacing buses as the normal means of communication between computers,
between I/0 devices, between boards, between chips, and even between modules inside chips.

One of the main networking domains, and the subject of this project, is Network-on-Chip (NoC), in
which the interconnection network is used for interconnecting micro-architecture functional units, reg-
ister files, caches, compute tiles and processor and IP cores within chips or multi-chip modules; current
and near future NoCs support the connection of a few tens to a few hundreds of such devices with a
maximum interconnection distance on the order of centimeters.

The router represents the key component in the Network-on-Chip, thus this project aims to design
and implement a simple Network-on-Chip router, with a four stage architecture and supporting virtual
channels, and properly verified by means of testbenches.

1.2 Summary of the work

A Network-on-Chip interconnection module has been developed, with a 2D mesh topology, and making
it possible to connect computing nodes either in a direct or indirect network, based on how these nodes
are connected to the mesh module.

The routers allocate data at flit granularity, implementing a wormhole switching architecture further
optimized by the presence of multiple virtual channels per input, avoiding the Head of Line blocking
issue and thus allowing an higher average throughput to the network.

Packet routing is driven by the Dimension Order Routing algorithm, independently computed by each
router belonging to the mesh.

Flow control is implemented in the switching activity management, which is controlled by a per-router
switch allocation unit, and uses the On-Off algorithm, easy to implement but efficient enough for a
medium level of traffic in the network.

2 Design and implementation

The Network-on-Chip router has been developed following a bottom-up approach, for easier testing
purposes, as simple, lower-level modules were implemented and tested before moving on to higher-
level modules.

A strong emphasis has been put on simplifying the connections between the submodules of the router,
thus the interface construct provided by SystemVerilog has been widely adopted; this has also helped
in decoupling the functional part of the modules from their I/O specification, making the connections
and interactions between them easier to understand even from the source code.

For each virtual channel at each port, a single-bit error output is implemented to signal to the ex-
ternal environment the detection of errors such as inconsistencies in the signals between allocators
and input ports or the reception of ill-formed packets at some port of a router.

This mechanism will make it possible to verify that the interconnection network works correctly, with
respect to most critical corner cases, also when deployed in a real-life scenario.

2.1 Circular Buffer

A circular buffer is the main responsible of storing flits at intermediate nodes while routing them to
their destination.

Simple read/write operations are allowed, and empty and full single-bit outputs signal these two pe-
culiar conditions of the buffer.

The on/off single-bit output gives signals to the connected upstream router whether the buffer can
accept more flits or not.

2.2 Input Buffer

The input buffer module encapsulates a circular buffer and surrounds it with status information about
the next hop for the current packet and the state of the internal finite state machine, which can be
either idle, virtual channel allocation or switch allocation.

The internal FSM of the input buffer is in the idle state when the buffer is available to be allocated to
a new incoming packet, in virtual channel allocation state when the buffer has received at least the
head flit of the packet and is waiting for the allocation of a buffer at the downstream router, and in
the switch allocation state while flits (up to the tail of the packet) are sent to the assigned downstream
virtual channel and contend for the access to the crossbar switch with the other buffers from the same
input port and the other input ports.

A dedicated single-bit flag signals to the connected upstream router if the buffer is available to be
allocated to a new packet.

2.3 Route Computation Unit

A purely combinational logic module, as the implemented routing algorithm requires only information
about the position of the current router and of the destination router in the 2D mesh, the route com-
putation unit computes the next hop for each packet as soon as the head flit arrives to the router (as
the header of an head flit encodes the position of the recipient of the packet), and sends the result of
its computation (i.e., the output port from which the packet will have to go out of the router) to the
input buffer in which all the flits of the packet will be stored.

2.4 Input Port

The input port module contains a configurable number of virtual channels and a route computation
unit; each input port is connected to the virtual channel allocator, switch allocator and crossbar module
of the containing router.

Only one flit per clock cycle can enter the input port from an upstream router, and is stored in the
virtual channel corresponding to an identifier properly encoded in the flit itself; in the same way, only
one flit can be read from a selected virtual channel at each clock cycle, and sent to the crossbar.

To simplify connections with the interfaces provided by the other modules composing a router (while
no functionality is modified at all), input ports are grouped in a input block, one per each router,
containing a number of ports specified by a parameter (e.g. 5, in the 2D mesh topology case).

2.5 Crossbar Switch

This module enables moving flits from each input port to the outputs of the router, implemented in a
way such that each output can propagate at most one of the inputs; the selection of the inputs to be
propagated at each output is delegated to a connected auxiliary module, the switch allocator.

2.6 Round-Robin Arbiter

A standard round-robin arbiter is the basic component of more complex allocators, which will be used
in the router to solve contention of the virtual channel buffers and the crossbar switch.

This arbiter module can be parametrized for what concerns the maximum number of requests of a
shared resource, and the round-robin scheduling algorithm has been chosen for its simplicity, easy
implementation and for being starvation-free.

2.7 Separable Input-First Allocator

An allocator allows managing contention of multiple shared resources among multiple agents; the mod-
ule is implemented such that, first, at each input port round-robin arbitration is performed between the
virtual channels requesting for the allocation of any output port (indeed, the allocator is input-first),
then, at each output port, round-robin arbitration is performed between input ports requesting for its
allocation.

This separable input-first allocator module is used inside the two following allocator units, as it encap-
sulates all the allocation logic and the containing modules.

2.8 Virtual Channel Allocator

This module produces a request matrix as an input to the contained separable input-first allocator; this
matrix is produced based on the availability of virtual channels at the destination downstream input
port, i.e., whether at least one input buffer of the port is in idle state.

From the internally computed grant matrix, the virtual channel allocator module produces the identi-
fiers of virtual channels at downstream routers for the input buffers who won contention.

2.9 Switch Allocator

The switch allocator module solves the contention between input buffers for the access to the crossbar
switch, by encapsulating a separable input-first allocator and thus sending control signals to the cross-

bar module and to the input buffers.

Access to the shared crossbar switch depends on previous grants to the resources (with a Round-Robin
policy) and on the availability, from the flow control point of view, of the downstream virtual channel
that has been assigned to the upstream input buffer.

2.10 Router

Each router module contains a variable number of input ports, a crossbar, a virtual channel allocator
and a switch allocator, all properly connected to each other through the related interfaces, as shown in
Figure 1.

At each port, two interfaces (one for the router to act as the downstream, and the other to act as
the upstream of the communication) are provided to connect the router to another one; the interface
exposed by each router module is explained in detail in Section 4, and a schematic view can be seen
in Figure 2.

2.11 Mesh

The mesh module contains a variable number of routers connected in a direct network with a 2D mesh
topology, and both dimensions of the mesh can be defined as parameters of the module; another pa-
rameter of the mesh that has to be set at this final stage is the size of the input buffers (i.e., the number
of flits that can be stored at each virtual channel).

This module provides an interface to which external nodes can be connected in order to communi-
cate with each other by means of a Network-on-Chip interconnection network.

Upstream Routers

Input Block - Switch Allocator Interface
v
Input Block - Switch Allocator Interface

flit

h 4

Input Block - Grossbar Interface
Input Block - Grossbar Interface

Figure 1: Detailed view of the connections between internal submodules

Downstream Routers

is_valid

ig_on_off

is_valid

is_on_off

Figure 2: Detailed view of the external interface

3 Verification

The verification phase has not been approached from a complete functional testing point of view, as
developing a complete testbench for the whole developed system would have required a disproportion-
ate effort with respect to the desired quality level.

Instead, testing properly chosen corner cases has been deemed enough for the verification purposes of
this project; thus, a testbench module is used in order to test each router submodule, the router and
the mesh.

In particular, each testbench contains the module to test, later on simply referred as design under
test (DUT), and the necessary logic to both steer the input signals of the DUT and check its output
signals.

Each testbench verifies the correctness of the DUT output signals by checking them against the expected
output values inside a scoreboard structure.

Testing of single SystemVerilog modules and of multiple modules interacting with each other has been
performed with a bottom-up approach, alongside the development phase, both by manually analyzing
the VCD waveforms produced by simulations in the Vivado environment and by means of testbenches
self-evaluating the results of the same simulations.

All the tests have been executed in the Vivado HL WebPack IDE (2017.2 version) on Linux machines.

3.1 Circular Buffer

For this basic element of the NoC router, we designed a simple testbench that supports three different
operations: flit read, flit write and simultaneous read and write of different flits. Then, for a fixed
number of times, an operation is picked up in a random way and synchronously executed on the DUT.
The written flits are only of head type, for the sake of simplicity, and all the other fields are filled with
a progressive integer because at this early stage of development it is sufficient to check the correct
behavior of the circular buffer with respect to the singular flits, that is the flits have to exit the buffer
(when reading) in the same order as they have been written.

3.2 Input Buffer

The verification of this module includes also the handling of well-formed packets; thus, it is more
complex with respect to the previous circular buffer and both reading and writing operations now take
care of packets rather than single flits.

The test inserts different packets and, through the scoreboard, it ensures the flits exit from the DUT in
the expected order and with correct field values. Simultaneously, a parallel check to the flits operations
aims to verify the correct values of the output signals related to the VC management.

The testbench for the input buffer is quite simple and limited, as a deeper verification will be carried
out on the input port module; at this step of verification, it is deemed enough to prove the correct
behavior of the single input buffer just for single packets.

3.3 Route Computation Unit

The testbench for the route computation unit has a simple structure; indeed, it does not require any
scoreboard mechanism but it uses only a dedicated function for comparisons. Using arbitrary values as

mesh dimensions and a fixed X,Y location for the DUT, the main task relies on nested loops to compute
all the possible destinations; for each of them a simple comparison is done between the effective out
port from the DUT and the expected outcome, that is the out port computed by the testbench.

3.4 Input Port

The testbench for this module is more structured than the previous ones because it involves the simul-
taneous verification of multiple input buffers, considered as Virtual Channels contained within an input
port.

The designed testbench allows some degree of freedom to specify different parameters for every test
that will be executed: it is possible to choose which VCs to use, the precise structure of the packet (size
and number of different type of flits), possible delays between the arrival of flits and the timing for the
signals about Allocation phases.

Multiple tests are provided with the objective to verify the behavior of the DUT in some corner cases,
such as packets without body flits, longer than the buffer length, with multiple head flits, without lead-
ing head flit and single-flit packet. Also, the DUT is tested with simultaneous operations involving all
available VCs.

3.5 Crossbar Switch

The verification of the crossbar would require also the deployment of input block and switch allocator
modules, therefore the following testbench would be quite complex to implement and not very effective
for detecting possible errors in the crossbar design. For this reason, we used a Mock module that has
as inputs the signals of both input block and switch allocator, thus allowing us to design a simplified
logic to steer the DUT.

Therefore, for this testbench there is no need for the usage of a scoreboard structure and the test verifies
that all possible combinations between input and output ports return the correct flit.

3.6 Round-Robin Arbiter

The arbiter allocates resource it monitors to one of the agents that requested it, each time by upgrading
and following the priority of each agent; in order to check the correctness of the round robin arbiter
we need to be sure that the grants have been asserted only to the agents that requested them, and we
also need to check that in case of conflict only one agent has received the grant, and it is the one with
highest priority of those in conflict.

The testbench thus checks for each clock cycle that the agent which has been granted is unique and
that it has requested the access to the resource, also that it was the one with the highest priority with
respect to the ones that requested the resource; a simple starvation control is included, i.e., whenever
one agent requests a resource but it does not receive the grant a counter for that agent is incremented,
and if this happens more than a fixed number of times the starvation signal is raised for the correspon-
dent agent.

The test fails whenever the granted signals are more than one or when the grant is assigned to an agent
that didn’t request the resource or when the granted agent is not the one with highest priority among
the requesting ones.

10

3.7 Separable Input-First Allocator

The testbench for the separable input-first allocator is pretty straightforward, as it only checks the
correctness of the grants for the given inputs by simulating the module’s logic.

The testbench takes the requests for output ports from all the virtual channels from all the input ports
and generates two sets of grants, each of those with respect to the entity that requested them; when
both of those two grants sets have been computed, then the grant array for the output ports is generated.
The test fails whenever there’s a mismatch with the grants for the output port in the module.

3.8 Virtual Channel Allocator

The test of the virtual channel allocator would require the deployment of the input block module,
therefore we used a mock module, such as in the crossbar testbench, for convenience; the module has
as inputs the signals of the input block, allowing us to design a simplified logic to steer the DUT.

For this testbench we decided to test some of the basic tasks that the allocator has to perform and also
some corner cases. The testbench also implements the logic of an input-first allocator, in order to check
the correctness of the virtual channel allocations.

The core of the testbench simulates the logic of the virtual channel allocator and then tests its results
with the ones of the real module. The testbench takes the signals for the request of virtual channels
and the ones for their availability, which are given inputs that we control, and arbitrates those through
the input-first allocator logic. The allocation signals are then asserted based on the grants of the input-
first allocator. The availability of the virtual channels and the outputs signals of their assignment are
compared with the ones of the module, and the test obviously fails when there’s a mismatch on this
signals.

Aside from simulating the logic of the tested module, the testbench contains different scenarios, each
one covering various parts of the allocator behaviour. One scenario performs randomly generated re-
quests to the module, and also assigns random availability to each of the virtual channel; this scenario
covers only basic tasks of the allocator and we used it to check that the main logic were correct.

The other scenarios cover some corner cases which will be surely encountered by our allocator when
it will be used in a real NoC; they cover the situations where all the upstream virtual channels request
the same port, all the downstream virtual channels are not in idle for five clock cycles and then they
start to return available, a reset before the operations.

All the scenarios are tested with the simulation and compared to the real module to check any inco-
herence.

3.9 Switch Allocator

In order to check the correct behaviour of this module it would be necessary to also have already
deployed both the crossbar and input block module, therefore the testbench requires the usage of a
module mocking these two modules.

The testbench simulates the logic of a separable input-first allocator, in order to check the correct-
ness of the grants associated with the given inputs, then it simulates the assignments and the related
control signals that the switch allocator generates from the computed grant matrix; after generating
those values, a check is performed comparing the values produced by the module and the ones pro-
duced by the testbench.

11

The test produces a randomly generated set of inputs in order to check the main behavior of the mod-
ule, since this will cover the majority of the cases that our module will encounter in a real NoC, and
the test will fail whenever the values from the testbench and the values from the module differ.

3.10 Router Submodules Integration

Once that all modules of the Router have been tested alone, it is possible to proceed with an integration
step and verify the overall behavior of these modules together; this stage of verification then relies on
a testbench that involves Crossbar, Switch Allocator, VC Allocator and Input Block.

It is important to remark that we chose to design this testbench, before the one for the complete Router,
because we wanted to ensure the correct matching between the inner signals.

For the reason just mentioned, the testbench simply tests whether a well-formed packet goes through
the Input Block and come out of the Crossbar in the correct order with respect to the one stored in the
scoreboard. A more comprehensive testbench is provided for the complete Router module.

3.11 Router

The testbench for the Router requires also the implementation of a Mock module to establish the proper
connections with the interfaces. Using a similar structure to the one used for the Input Port, the test-
bench verifies the DUT behavior with well-formed packet and under some specific corner cases such
as: full packet with delay between flits, packet without body flits, long packet that exceeds the length
of the internal buffer, ill-formed packet with multiple head flits and packet without the head flit and,
finally, with single flit packet.

Also for this module, the verification is done both using the scoreboard, for checking the correct order
of the flits, and manually analyzing the VCD, for spotting any eventual inconsistency with the expected
behavior.

3.12 Mesh

This testbench aims to verify the communication between only two routers and then through the mesh;
the verification step of two connected routers is crucial for the verification of the complete mesh be-
cause once it is ensured that the communication between each pair of routers works properly, as a
consequence the communication across the entire Mesh will work as well.

In the former case, two connected routers are tested in an exhaustive way, ensuring that all possible
combinations among input ports of the first one and output ports on the second returns the correct
ordering of the flits according to the ones stored in the scoreboard.

In the latter case, instead, a well-formed packet is sent through a 2x3 bidimensional mesh, and the
outcome of test is inspected simply analyzing the VCD.

3.13 Verification Scenarios

This section briefly reports, in a compact and structured way, all the tests that have been carried out
on both a Router module alone and a pair of connected Routers.

As already mentioned in the first part of the Verification section, it is important to remark that the
implemented tests do not ensure an extensive full coverage of all the possible cases, but instead they
focus on some particular corner cases.

12

3.13.1 Single Router Scenario

In a single Router scenario, the tests aim to ensure the correct management of packets, and their flits,
with respect to the Virtual Channels but also to check the internal components as well.

Test No. | Test Description

1 Single, well-formed packet with 4 flits

2 Simultaneous insertion of two well-formed packets (4 flits) with different destination ad-
dresses, that means different outports

3 Simultaneous insertion of two well-formed packets (4 flits) with the same destination
address, that means same outport

4 Simultaneous insertion of two well-formed packets (4 flits) with the same destination
address and with delay between flits arrival

5 Simultaneous insertion of two well-formed short packets composed only of HEAD and
TAIL flits, with the same destination address

6 Simultaneous insertion of two well-formed packets with different sizes that exceed the
buffer length and with the same destination address

7 Simultaneous insertion of two ill-formed packets, that is with multiple HEAD flits

8 Simultaneous insertion of two different single-flit packets

9 Insertion of an ill-formed packet without the leading HEAD flit

3.13.2 Two Routers Scenario

This verification step, which is fundamental for the test of the complete mesh, checks in an exhaustive
way the communication between two attached routers.

Test No. | Test Description

1-16 | Each test inserts for every pair of input port of the first Router (more precisely Local,
North, West and South) and output port of the second (that are Local, North, East and
South) a well-formed packet with a proper and precomputed destination address to reach
the output port currently under test.

13

4 Router External Interface
In the following section, an overview of the interface exposed by the Router is provided, detailing the

inputs and outputs of the module and the interfaces that enable connecting one router to another, in
order to obtain a 2D mesh structure.

4.1 Inputs and Outputs

Signal Size (bits) Description
clk 1 Clock signal input to the Router module
Inputs -
rst 1 Asynchronous reset signal, resets the Router to

the initial state, in which all the buffers are
empty and the internal allocators have no pre-
vious history

Outputs | error_o | # ports x # virtual channels

Error flags, each corresponding to an Input Port
- Virtual Channel pair, signal errors for the flits
stored at the related buffer

4.2 Interfaces to Other Routers

Interfaces

Description

Upstream

router2router.upstream
router_if [link] up

router_if local_up
router_if north_up
router_if south_up
router_if west_up
router if east_up

Router-Router interfaces (re-
spectively at the Local, North,
South, West and East links),
where the Router acts as the up-
stream entity (i.e., it sends the
packet flits to the downstream
Router connected on the other
end of the link)

Downstream

router2router.downstream
router_if [link] down

router_if local _down
router_if north_down
router_if south_down
router_if west_down
router_if east down

Router-Router interfaces (re-
spectively at the Local, North,
South, West and East links),
where the Router acts as the
downstream entity (i.e., it re-
ceives the packet flits from the
upstream Router connected on
the other end of the link)

14

4.2.1 Router-Router Interface Signals

Signal Size (bits) Description
data # bits per flit Data lines transporting one flit at a time from the upstream
Router to the downstream one (see the Flit Encoding Scheme sec-
tion for more detailed information about how the flit_t type has
been defined)
is_valid 1 Flag signaling the validity of the flit currently on the data line
is_on_off # virtual channels | Flag representing the availability, from the on/off flow control

point of view, of the virtual channels of the downstream router’s
input port to receive more flits

is_allocatable

virtual channels

Flag representing the availability of the virtual channels of the
downstream router’s input port to be assigned to an upstream
virtual channel in order to receive a packet (i.e., from the head
flit to the corresponding tail flit)

4.2.2 Router-Router Interface Modports

Modport Inputs Outputs
Upstream is_on_off data
is_allocatable is_valid
data is_on_off
Downstream is_valid is_allocatable
5 Flit Encoding Scheme
Section Subsection | Description
flit_label Label representing the type of the flit, which can be ei-
ther HEAD, BODY, TAIL or HEADTAIL (see flit label t
type definition)
ve_id Identifies the virtual channel in which the flit has to be
stored at the downstream input port
data, head_data x_dest X coordinate in the 2D mesh of the recipient Router
which is either y_dest Y coordinate in the 2D mesh of the recipient Router
head pl Payload of the flit
or bt pl Payload of the flit (larger than the HEAD flit one, as the
recipient address is not needed in BODY and TAIL flits)

15

6 Conclusions and Future Works

The Network-on-Chip has been designed, implemented and then verified on some more complex corner
cases, manually defined as the most critical and significant ones, alongside with other simple random
tests.

Some improvements can be seen as a natural continuation of this project in the future.

From the design point of view, an higher performance could be obtained by adding speculation to the
router, i.e., speculating the outcome of the virtual channel allocation in order to carry it out at the same
clock cycle as the switch allocation for the head flit of each packet.

Meanwhile, from the verification perspective, a more complex testbench could be implemented in the
future for a more complete functional coverage of the design under test, with random tests being sub-
sequently generated from the feedback of previous ones.

16

