
Arindam Das

(+91) 98316 57983 • dasarindam.mails@gmail.com • Baidyabati, India • github.com/arindas

Description

I specialize in distributed systems, deep learning inference and AI SaaS at scale.

My expertise enables me to architect and implement cloud-native software services, for different domains. I
primarily have experience in medical imaging and diagnosis, real-time document processing and business inventory

management.

Technical Skills

Languages: C, C++, Java, Python, Golang, Rust, Javascript, Typescript, SQL

Frameworks and Libraries: Django, Tensorflow, Pytorch, React, Glommio

Tools: Git, Vim, Neovim, Awk, Sed

DevOps: Linux, Nginx, Docker, Bash, Zsh, Github Actions, Gitlab CI, Terraform

Databases: PostgreSQL, GCP Cloud Firestore, SQLite

Cloud: AWS{S3, EC2, Lightsail}, Firebase, GCP{Instances, PubSub, Cloud Storage}, Azure{Instances, Blob
Storage, Container Apps}

Soft Skills

Agile Software Development, Requirement Analysis, System Design, Technical Content Delivery

Experience

MLOps Engineer, Medical Imaging AI Services, Claritas Healthtech (06/2020 - Present)

Responsibilities

Provisioning infrastructure for researchers to train and experiment with deep learning models

Developing distributed deep learning inference services and corresponding client web applications

Deploying and maintaining said applications on the Google Cloud Platform

Projects

Cloud based file storage solution built using Google Cloud Storage

Supports bucket creation, bucket level user access authorization and create-read-update operations.

Backend is a golang web service built with, google-cloud-sdk, Cloud Firestore database and Firebase

Authentication

Frontend is a React SPA application

This solution enabled us to collaborate on sensitive datasets with over 10 different medical institutions
across UK, Singapore and Europe without providing access to our GCP infrastructure.

mailto:dasarindam.mails@gmail.com
https://github.com/arindas


Distributed deep-learning based diagnosis on medical images for a variety of diseases

Designed as an event-driven suite of microservices, in golang and python.

We employ golang for the web serving infrastructure and python for inference.

Google Cloud PubSub is used as the messaging layer.

Capable of integrating with dedicated inference servers like Torchserve, Nvidia Triton and Tensorflow
Serving

We provide a React Dashboard for: Visualizing medical images, Requesting AI diagnosis, Tracking

inference status and Viewing AI Medical Diagnosis reports

Reduced turnaround time for a new disease prediction service deployment by 10x, along with improved
audit record keeping of all predicted reports.

Dedicated Inference services for research Proof-of-concepts

Implemented as a Django user facing application and a inference server.

The Django application behaves as a sidecar for the inference server

The inference server is either implemented as a FastAPI service or a dedicated Torchserve server based

on requirements.

I was responsible for productionizing over 15 different deep-learning models split across 6 different web
services in a span of 2 years.

Solution Architect, DeepWrex Technologies (04/2018 - 06/2020)

Responsibilities

Architect cloud based solutions for machine learning software services.

Assist researchers in implementing deep learning research papers.

Iterating from research PoC to production.

Projects

Real-time named entity recognition system for medical reports.

In house, economic alternative to AWS Medical Comprehend which didn't exist at the time.

Implemented as a event-driven suite of C++ microservices, with intermediate data storage on AWS S3.

We used Apache Kafka (using rdkafka) as the messaging layer.

This solution enabled our consulting partner to make medical reports more accessible to patients.

Black and white image colourization system

We implemented the Instance aware image colourization paper which was the state-of-the-art deep
learning based image colourization paper at the time.

Used Torchserve inference server for scalable GPU inference and FastAPI for user facing web services.

Deployed on AWS on a GPU enabled EC2 instance.

We also developed and launched a Flutter Client Application to Google Play Store with over 50 downloads

in the first month.

https://arxiv.org/abs/2005.10825


Satellite Onboard Computer RTOS Research Student, KIITSAT (04/2018 - 05/2019)

Designed a shell capable of spawning programs and organizing pipes within 200 lines of C

Developed a minimal kernel for armv6 (on Raspberry Pi 3) with basic memory management and TTL based I/O

Support

Trained a team of 8 fellow researchers on OS concepts and implementation details.

Collaborated with 2 different student engineering departments for integrating with different Satellite subsystems

VR 3d Game Development Instructor Intern, CampK12 (03/2020 - 06/2020)

Responsibilities

Teaching K12 students about game development which entailed:

Basic Programming using Javascript (Control flow, operators, functions, callbacks etc.)

Elementary Trigonometry for animating movements of game objects

I guided 5 different students through 8 game-dev projects over a period of 3 months. At the end of the course the

students were able to independently implement features and explore new concepts.

Education

B.Tech in Computer Science and Engineering

KIIT University (06/2017 - 06/2021), CGPA: 9.44 / 10, SGPA 8th Semester: 9.69 / 10

Open Source Projects

laminarmq: A scalable, distributed message queue powered by a segmented, partitioned, replicated and

immutable log. It is a resource efficient alternative to Apache Kafka.

generational-lru: A generational arena based LRU Cache implementation in 100% safe rust. All allocations are

based off a vector.

sangfroid: A load-balanced thread pool implemented in Rust using only the standard library. Worker threads are

managed with binary heap and are prioritized by the number of pending jobs.

quartz: A shared memory parallelized ray tracer using OpenMP. Speciality: Non recursive. Traditionally ray

tracers are tail recursive. Image formats supported: PPM

mac-on-linux-with-qemu: Runs MacOS on Linux with the QEMU KVM Hypervisor with some python utility

scripts for downloading the disk images and shell scripts for starting QEMU.

riakv: An append-only key-value store, with checksum based record validation. It support both in-memory

usage and persisting records to the disk.

elevate: Barebones zero dependency HTTP File upload server in Go.

bheap: A Rust generic binary max heap implementation. It allows dynamic definition of the comparison function
for the underlying domain at runtime.

https://github.com/arindas/laminarmq
https://github.com/arindas/generational-lru
https://github.com/arindas/sangfroid
https://github.com/arindas/quartz
https://github.com/arindas/mac-on-linux-with-qemu
https://github.com/arindas/riakv
https://github.com/arindas/elevate
https://github.com/arindas/bheap

