
Material Palette: Extraction of Materials from a Single Image

Ivan Lopes1 Fabio Pizzati2 Raoul de Charette1
1Inria 2University of Oxford

https://astra-vision.github.io/MaterialPalette

Figure 1. Material Palette. We introduce the task of material extraction from a single real-world image without any prior knowledge.
Given an image as input (left and right), our method extracts Physically-Based Rendering (PBR) materials from input regions, which are
either provided by a user (right) or output of a segmenter such as SAM [26] (left). The extracted Spatially Varying BRDF (SVBRDFs)
encode material intrinsics (Albedo\Normal\Roughness). These can be reused for realistic material editing of 3D scenes (center).

Abstract

Physically-Based Rendering (PBR) is key to modeling
the interaction between light and materials, and finds exten-
sive applications across computer graphics domains. How-
ever, acquiring PBR materials is costly and requires special
apparatus. In this paper, we propose a method to extract
PBR materials from a single real-world image. We do so
in two steps: first, we map regions of the image to mate-
rial concept tokens using a diffusion model, allowing the
sampling of texture images resembling each material in the
scene. Second, we leverage a separate network to decom-
pose the generated textures into spatially varying BRDFs
(SVBRDFs), offering us readily usable materials for render-
ing applications. Our approach relies on existing synthetic
material libraries with SVBRDF ground truth. It exploits
a diffusion-generated RGB texture dataset to allow gener-
alization to new samples using unsupervised domain adap-
tation (UDA). Our contributions are thoroughly evaluated
on synthetic and real-world datasets. We further demon-
strate the applicability of our method for editing 3D scenes
with materials estimated from real photographs. Along with
video, we share code and models as open-source on the
project page: https://github.com/astra-vision/
MaterialPalette

1. Introduction
Whether it is a soft blanket, a rugged carpet, or a crumbling
stone, humans can identify materials from a photograph.
Besides geometry understanding, this ability derives from
our sensing of how light interacts with materials, allowing
us to identify the substance at stake without even touching
it. In sciences, this has pushed research in spectrophotom-
etry [18] or light sensing [4], while in the arts Vermeers
and Caravaggio, among others, have used this long stand-
ing observation to convey the feeling of materials in their
paintings. Modern CG artists also deploy significant ef-
forts to mimic realistic light-material interaction, through
the design of Physically-Based Rendering (PBR) materials.
While many libraries of material assets exist, no dataset can
capture the true variety of real-world materials. What is
more, capturing real-world materials is still a complex en-
deavor requiring special apparatus [2]. In many scenarios,
however, one may wish to estimate a material from an RGB
image, for example, to capture a unique marble stone during
a trip or the fur of a wild animal from a souvenir photo.

Hence, we formulate the novel task of extracting PBR
materials from a single real-world image, as shown in
Fig. 1. Given a set of regions, our method solves this task by
generating corresponding textures along with their Spatially
Varying BRDFs (SVBRDFs) without a priori knowledge
about the capturing viewpoint, scene geometry or lighting.

https://astra-vision.github.io/MaterialPalette
https://github.com/astra-vision/MaterialPalette
https://github.com/astra-vision/MaterialPalette

This sets our work aside from the literature. We coined our
method Material Palette because, just like a painter would
create their own color mix, one can create their palette of
materials from their own photos (Fig. 1, left and right).
Moreover, extracted materials are readily usable for CG ap-
plications such as 3D renderings (Fig. 1, middle).

There are major challenges in the estimation of PBR
materials from just one RGB image, since single-view de-
composition is highly ill-posed [9]. To address these hur-
dles, we rely on recent advances in text-to-image genera-
tion [39, 45, 47] to disentangle the specific material appear-
ance from the scene geometry and imaging conditions, al-
lowing us to generate close-up tileable RGB textures of the
materials in the scene. We further extract the PBR intrinsics
of these diffusion-generated images, with a domain adapta-
tion strategy that benefits from a novel synthetic dataset.
Experiments show that Material Palette outputs convinc-
ing results and performs better than baselines. The ex-
tracted materials closely resemble their real-world counter-
parts, which makes them usable for 3D scene editing.
We contribute in the following ways:
• We formulate the novel challenging task of material ex-

traction from a single real-world image.
• We introduce Material Palette, a method to extract mate-

rials within an image, operating in either a user-assisted
or fully automated mode (Sec. 3.4).

• We show how a finetuned text-to-image diffusion model
can generate realistic tileable texture images (Sec. 3.2)
suitable for SVBRDF estimation (Sec. 3.3).

• We provide a non-trivial evaluation pipeline to assess the
quality of extracted PBR materials along with a novel
prompt-generated dataset named TexSD. Experiments
show our materials are close to those of real material
datasets and readily usable for 3D editing.

2. Related works
To the best of our knowledge, we are the first to address
end-to-end extraction of multiple materials from single real-
world images, but we cover literature connected to our task.

Single-image intrinsics decomposition. Long after the
pioneering work of [21], deep networks were leveraged
for decomposition, exploiting their great pixel-wise esti-
mation capabilities. Most early works focused on object-
centric scenes with Lambertian assumption [55], user inter-
action [33], or scene layers [23]. To decompose in-the-wild
objects, symmetry [60] or cross-instance [37] constraints
are applied, while [24] requires the 3D mesh [24]. Holis-
tic scene decomposition was addressed splitting albedo and
shading [3, 30, 38], also with the support of image-to-image
translation [34], or inverse rendering [53]. To account for
spatially-varying lighting, some use mixture of illumina-
tions or SVBRDF [3, 16, 31, 32, 66]. Notably, many of

these works rely on estimated light sources and are designed
for either indoor or outdoor scenes. Additionally, they cap-
ture the intrinsics of a scene image without distinguishing
between the materials present. We instead wish to extract
the intrinsics of dominant materials.

Material and texture extraction. Typical material cap-
ture requires expensive multi-view [2] or polarized [11]
apparatus. Many use synthetic data to train single-view
SVBRDF estimation networks [9], often coupled with ad-
ditional single-view data [15, 36] or custom training strate-
gies [10, 28, 56]. Importantly, all works mentioned require
orthogonal close-up views of the materials which is imprac-
tical for real scenes. UMat [46] uses a single image ac-
quired with a flatbed scanner. PhotoScene [63] is the clos-
est to our work, but it requires CAD inputs and it is lim-
ited to a set of synthetic material graphs. Instead, we pro-
pose a single-image method targeting real-world materials.
TexSynth [12] provides a guided texture editing method but
does not model materials explicitly.
A connected field is texture extraction from real-world im-
ages. Note that while materials model light interaction, tex-
tures only describe the spatial arrangement of colors. A
common strategy is to cluster the image textures and ex-
tend them to full resolution [29, 49] or apply dataset distil-
lation [7]. While we inspire from texture extraction meth-
ods, our task differs drastically as we seek to estimate the
full SVBRDF – not only the color.

Text-to-image generative models. Seminal works for
text-to-image generations exploited conditional generative
networks, allowing image synthesis in constrained scenar-
ios only [62, 64, 67]. Instead, training on billions of sam-
ples has been proven effective in generalizing on a wide
range of prompts [44, 45]. To this extent, diffusion mod-
els are exploited for their stability at scale [39, 45, 47, 51],
although adversarial-based methods are also used [52]. Re-
cently, MatFuse [58] and ControlMat [57] adopted diffusion
processes for material generation. We get inspiration from
them while avoiding long training times.

3. Material Palette
Our method extracts PBR materials from regions of a real-
world image. Different from approaches relying on close-
up captures [9, 36] or dedicated hardware [2], the problem is
more challenging when presented with an in-the-wild image
(Sec. 3.1) with unknown lighting and geometry. We build
on advances in vision-language models to achieve this goal.

Given an input image I and some input regions
{R1, · · · ,RN}, Material Palette extracts a set of corre-
sponding materials SVBRDF {M1, · · · ,MN}. Fig. 2 il-
lustrates the complete pipeline. For each region, we ex-

Figure 2. Material Palette pipeline. From a single image I (left) our method extracts the SVBRDF of dominant materials (right). Consid-
ering a set of regions {R1, · · · ,RN} from a user or a segmenter (Sec. 3.4), we process each region Ri separately following two steps. In

(Sec. 3.2), we finetune Stable Diffusion [47] on crops of the region PC to learn a concept S∗, which is later used to generate a texture im-
age PSD resembling PC. Then in (Sec. 3.3), these patches are decomposed into SVBRDF intrinsics maps (Albedo, Normal, Roughness)
using a multi-task network. Finally, the output is the palette of extracted materials {M1, · · · ,MN} corresponding to input regions.

Multi view training Single view training

Image A N R A N R

Figure 3. Decomposition with known illumination. Training on
ACG [1] we note that even with known lighting, single-view leads
to degenerated intrinsics (A,N,R) due to viewpoint ambiguities.

tract a texture approximating its material appearance us-
ing Stable Diffusion [47] (Sec. 3.2) . Then, we rely on
a domain-adaptive SVBRDF decomposition using our dif-
fusion prompt-generated samples for generalizing to the ex-
tracted textures (Sec. 3.3). While our pipeline can rely on
user inputs to define the image regions, we can also query
any off-the-shelf segmenter (Sec. 3.4).

3.1. Problem statement

Considering a typical intrinsics decomposition, an image
P with known illumination can be approximated as the
result of a rendering operation ρ̃(.) from SVBRDF maps
M̃ = {Ã, Ñ , R̃}, being pixel-wise Albedo, Normals, and
Roughness, respectively. This writes: P = ρ̃(M̃). Our
goal is to learn the inverse rendering process with a neural
network f to predict M̃ from P . In details:

f(P) = M = {A,N,R} ∼= M̃, (1)

where M̃ is the ground truth SVBRDF. A dataset with such
labels is obtainable with expensive procedural generation
of top-view materials or acquisitions in controlled scenar-
ios [1]. We can train f , by rendering multiple views with
known illuminations ρ̃1...n, and enforcing both a regression
loss Lreg towards the ground truth maps and a multi-view

rendering loss Lren on the n renderings [19]:

Lreg=||M − M̃ ||1, Lren=

n∑
i=1

||ρ̃i(M)− ρ̃i(M̃)||1 . (2)

After training, f can be used to estimate M from unseen
images with unknown SVBRDF (Fig. 3, multi-view). How-
ever, in our scenario we wish to estimate M from specific
regions of an in-the-wild image with variable illumination
and geometry, thus being shifted w.r.t. the training distribu-
tion of materials datasets. Besides, even assuming known
illumination, a single view is ambiguous for intrinsics de-
composition (Fig. 3, single-view).

Without any geometry or illumination priors, we tackle
the problem per region by extracting tileable textures which
are then decomposed into SVBRDF (Sec. 3.2) while ac-
counting for the domain gap (Sec. 3.3).

3.2. Tileable texture extraction

Given an image I and a material region R, a naive ap-
proach to disentangle the appearance from the scene geome-
try/lighting would be to classify the material in R and use its
label to generate patches with a text-to-image network [47].
This would however fail to capture the fine-grained char-
acteristics of the material in R. Considering for example
the picture of a rundown house in Fig. 1 (right), the label
“brick” does not fully capture the intricate appearance of
unaligned and weathered stones. Indeed, a mere classifica-
tion of the material fails to encompass the complexity of the
texture and its unique appearance.

We formulate the problem as texture extraction from a
region R, thus seeking to remove geometric distortion and
lighting in R by generating a flat texture image which we
further decompose. To do so, we build upon text-to-image
models [47], exploiting their capabilities for disentangling

Figure 4. SVBRDF Unsupervised Domain Adaptation. We
train a decomposition network f on labeled SVBRDF materials
S and unlabeled target data T from our novel TexSD dataset. Ul-
timately, T reduces the domain gap between the SVBRDF dataset
and the real domain, i.e., patches generated from our extraction
method (cf. Sec. 3.2). We enforce both regression and rendering
losses on S and T using pseudo-maps M̂ extracted by the source-
only model fS (top). The final adapted model is denoted fT .

semantics. Essentially, we finetune a text-to-image diffu-
sion model [50] to encode the material depicted in R as a
token. This allows us to generate a resembling tileable tex-
ture at any arbitrary resolution.

During finetuning (in Fig. 2), we extract crops PC
from R, utilizing them to map the material to a concept to-
ken S∗. The aim is for S∗ to accurately describe the appear-
ance of the specific material in R, more faithfully than when
using a class name. In practice, we first finetune Stable Dif-
fusion [47] and learn S∗ [22, 50] using a single prompt tem-
plate, PromptTrain = “an object with S∗ texture”. Note,
that the latter includes no information about the material
class, removing needs for material labeling.

During inference (in Fig. 2), we rely on different
prompts PromptsGen chosen to enforce a texture-like ap-
pearance on a planar surface, such as “realistic S∗ texture
in top view”. The generative nature of the process lets us
generate not only one but a set of multiple textures from
S∗, all resembling the material in R. We rely on minimum
LPIPS [65] w.r.t. crops of R to select the ad-hoc texture
PSD. We later detail the effect of prompts on the acquisition
of S∗ and generation of textures (Sec. 4.5).

Additionally, we follow ControlMat [57] and adopt noise
unrolling at inference to generate tileable textures. Differ-
ent from ControlMat though, we are not conditioned on an
input image at inference, but rather on S∗ which we can
leverage to generate textures at any resolution.

3.3. SVBRDF estimation

We now seek to decompose each generated RGB-
only texture from PSD into intrinsics M = {A,R,N}.

From Sec. 3.1, a decomposition network f can be trained on
a SVBRDF dataset and used on our generated textures PSD.
Although these are much closer, than R, to actual render-
ings of SVBRDF datasets1, f still suffers from a distribution
shift. We address this problem as an unsupervised domain
adaptation (UDA) S7→T where the source domain S con-
sists of materials with SVBRDF labels, and the target do-
main T is composed of diffusion-generated RGB textures.

Source training. We train our source model fS by enforc-
ing a reconstruction loss on ground truth maps M̃ and a
multi-view rendering loss with 9 lighting configurations2,
denoted ρ1...9. Explicitly, we optimize fS by minimizing
Lreg and Lren defined in Eq. (2) with:

λLreg(M, M̃) + Lren(M,M̃) (3)

where M = fS(P̃) and P̃ the rendering of M̃ with a ran-
dom lighting ρrand. Ground truth maps M̃ ∈ S are obtained
from any SVBRDF library such as ACG [1].

TexSD. To bridge the gap with SVBRDF libraries, we first
generate training material textures in the target domain by
prompting the text-to-image model with PromptsGen, e.g.,
“realistic Sc texture in top view”, replacing Sc with a class
name. Notably, we do not rely on finetuning, but instead
only exploit the text-to-image capabilities of large diffusion
models and their innate knowledge of material classes. This
allows us to construct a dataset, named TexSD, of 9,000
textures generated from a set of 130 classes derived from
ACG and ChatGPT proposals [40]. A schematic view is
in Fig. 2 (block ‘TexSD’), and details are in the supplemen-
tary. Crucially, despite the generation of multiple images
per class, these texture images are not multiple views of the
same material instance. They are instead single-view varia-
tions within a class.

Adaptation. Equipped with TexSD as target domain T ,
we overcome the ill-posed single-view training (cf. Fig. 3)
drawing inspiration from pseudo-labels [27]. We extract
pseudo-decomposition maps M̂ = {Â, N̂ , R̂} for all tex-
tures images P̃SD ∈ TexSD by processing them with our
source model fS . This enables pseudo multi-view training
on T with only single view images.

Hence, we follow Eq. (3) to train on S with ground truth
M̃ , then finetune concurrently on S + T , using pseudo-
labels M̂ for T . An illustration of the training process is
shown in Fig. 4. In both stages, SVBRDF inputs are ren-
dered with random lighting conditions ρrand to encourage
invariance and robustness. At inference, we use fT to infer
the SVBRDF of PSD, leading to material maps MSD.

1By construction, PSD textures should be geometry- and lighting-free.
2Light configurations are defined as angles (α, ϕ) on the upper hemi-

sphere, with α the light angle and ϕ the viewing angle. Following [9], we
sample 6 symmetrical lighting/viewing angles to encourage specular and 3
uniformly sampled lighting/viewing angles to cover the parameter space.

3.4. Pipeline automation

Our pipeline is readily usable to extract materials from any
region R of a real-world image. While 3D applications may
benefit from user interaction to define R, we also comple-
ment our pipeline with full automation.

To do so, we formalize the problem of defining regions
{R1, · · · ,RN} on real-world images as a 2D segmentation
task. We integrate two segmentation models in our pipeline:
the Segment Anything Model (SAM) [26], a large-scale in-
stance segmentation model, and Materialistic [54], a mate-
rial selection method. In Sec. 4.4, we show how all of these
region proposals lead to accurate material extractions.

4. Experiments
We study the performance of Material Palette along four
main axes: i) Measuring the quality of our generated tex-
tures with respect to textures scraping techniques (Sec. 4.2);
ii) Quantifying our SVBRDF adaptation scheme on real ma-
terial textures (Sec. 4.3); iii) Evaluating the quality of our
extracted materials end-to-end (Sec. 4.4); iv) Through ex-
haustive rendering of 3D scenes with our materials. We also
ablate our method in Sec. 4.5 and demonstrate the usage of
our Material Palette for 3D editing in Sec. 4.6. Please refer
to the demo video on the project page for better evaluation.

4.1. Experimental details

Networks. We use Stable Diffusion [47] v1.5 for tex-
ture extraction, training a LoRA [22] Dreambooth [50] for
learning S∗. Optimization times take around 3-5 min per
learned S∗ on a Tesla V100-16GB. When learning S∗,
PromptTrain is set to “an object with S∗ texture” while
for inference it is chosen randomly among PromptsGen
(see Fig. 10). To ensure tileability and high resolution gen-
eration, we roll the latent tensor on both spatial axes by
a random amount at every timestep of the diffusion pro-
cess [57]. We apply Poisson solving [41] to remove seams
remaining on the borders. We directly sample textures up to
1024px, while for higher resolutions we batch-decode the
latent code and blend overlapping patches using a weighted
average. For f , we use a multi-head CNN [35] with U-
Net [48], ResNet-101 [20] backbone, and custom decoders
with alternating upsample-conv layers.
Public datasets. We leverage three SVBRDF libraries
(AmbientCG [1], PolyHaven [42], CGBookcase [8]) and
one material segmentation dataset (OpenSurfaces [5]).
AmbientCG (ACG) contains 2000 high-resolution PBR ma-
terials obtained from real-world captures with special ap-
paratus, procedural generation, or image approximation.
It includes around 50 material classes. We use the high-
resolution 2k textures from ACG to train all source models.
PolyHaven (PH) and CGBookcase (CGB) are smaller li-
braries composed of 320 materials each. We use them as

Patch-based Region-based

Image Patch DeepTex[17]Quilting [13] PSGAN [6] Region Li et al. [29] Ours (2048x2048)

Figure 5. Textures extraction. We compare texture extracted
from natural images with 4 patch-based or region-based baselines.
Differently from baselines, our method is based on a learned con-
cept S∗ which, when used for generating samples, corrects ar-
tifacts, is not limited to a fixed resolution and is fully tileable,
resulting in homogeneous textures. For ease of comparison, we
show outputs at 2048x2048 along a x2 and x4 zoom. Images are
downscaled for visualization purposes.

evaluating sets to validate our adaptation method.
OpenSurfaces (OS) is an image dataset including dense
material annotations. We use 14 overlapping classes with
ACG and use a subset for end-to-end evaluation.
TexSD dataset. We introduce a new dataset used for
adaptation (Sec. 3.3). It is obtained by prompting Stable
Diffusion [47] with PromptsGen and 130 class names and
totals 9,000 1K textures. Details in the supplementary.

4.2. Texture extraction

We showcase our text-to-image texture extraction (Sec. 3.2)
and existing techniques in Fig. 5. We compare qualita-
tively with [29] while also providing GAN-based base-
lines [6], methods inspired by style transfer [17] or image
quilting [14]. For a fair comparison, we show outputs from
our method using the same regions as [29].
Even though [29] outperforms older methods, it presents
artifacts (last two rows) making images unsuitable for ma-
terial extraction. Moreover, the extracted textures are non-
tileable and entangle geometry and lighting. In particular,
in the second row, the texture of [29] replicates the shading
of the input coral image. Our method dramatically differs as
it is able to map input images to plausible material textures,
removing geometry and lighting while remaining devoid of
artifacts. Importantly, we can generate any variations of
tileable samples, at any resolution. Ultimately, this shows
the inadequacy of prior extraction methods for extracting
tileable high-resolution texture patches suitable for decom-
position and rendering purposes.

4.3. SVBRDF decomposition

We now focus on our proposed UDA pipeline for decompo-
sition (Sec. 3.3). Since our TexSD dataset does not come
with associated SVBRDF ground truths, we rather eval-

MSE (10e1) ↓ SSIM ↑ ∆% ↑
method DA A N R A N R ANR

PH
ID

Deep Materials* [9] 0.264 0.380 0.453 0.379 0.235 0.358
Source-only 0.083 0.300 0.475 0.610 0.304 0.458 ↱

SurfaceNet [56] ✓ 0.071 0.298 0.427 0.626 0.304 0.472 +5.18
ours ✓ 0.069 0.291 0.443 0.630 0.309 0.476 +5.87

C
G

B
ID

Deep Materials* [9] 0.590 0.465 1.940 0.392 0.228 0.346
Source-only 0.098 0.221 0.555 0.662 0.437 0.476 ↱

SurfaceNet [56] ✓ 0.101 0.230 0.615 0.657 0.445 0.471 -3.00
ours ✓ 0.084 0.219 0.588 0.669 0.457 0.482 +2.62

PH
O

O
D

Deep Materials* [9] 0.264 0.380 0.453 0.379 0.235 0.358
Source-only 0.065 0.247 0.439 0.608 0.284 0.518 ↱

SurfaceNet [56] ✓ 0.053 0.250 0.415 0.608 0.283 0.524 +3.94
ours ✓ 0.053 0.246 0.409 0.618 0.288 0.531 +5.24

* Note that Deep Materials [9] is trained on an in-house dataset.

Table 1. DA evaluation. Performances on In-Distribution (ID,
top) and Out-of-Distribution (OOD, bottom). ∆ measures the rel-
ative performance over {A,N,R} w.r.t. the ACG-only model. DA
refers to methods using domain adaptation strategies. Our adapta-
tion succeeds at preserving generalization abilities on OOD sam-
ples, while SurfaceNet [56] has slightly lower gains on OOD.

Source-only (ACG) Ours ACG 7→ SD

PSD A N R 3D A N R 3D

Figure 6. Qualitative results. Comparison between Source-only
training (ACG) and our (ACG 7→ SD) adaptation on unseen SD
samples. We notice that Source-only overestimates N and R and
exhibits color shift in A. This results in a lower-quality 3D render.

uate on two additional S7→T scenarios: ACG 7→PH and
ACG 7→CGB. This allows us to measure the adaptation ef-
fectiveness on the target set T w.r.t. ground truth anno-
tations. We report standard metrics: Mean Squared Error
(MSE ↓) and Structural Similarity Index (SSIM ↑) [59]. For
a refined comparison, we evaluate common classes in S and
T as In-Distribution (ID), resulting in 53 and 58 materials
for PH and CGB, respectively.

We propose three baselines. First, we evaluate Deep Ma-
terials [9] as an off-the-shelf decomposition network. We
also compare with an ACG Source-only model, serving as
lower bound. Then, we implement SurfaceNet [56] with our
architecture and finetune the original ACG model for both
SurfaceNet and ours. Results in Tab. 1 (top) suggest that we
improve consistently the decomposition. Considering the
richer PH material ontology, we also evaluate the 47 classes
of materials Out-Of-Distribution (OOD). In Tab. 1 we ob-
tain only a low-performance OOD drop (bottom) compared
to ID (top), exhibiting better generalization than baselines.

LPIPS ↓
R A N R

upper bound 0.8288 0.5915 0.7255

O
ur

s OS masks [5] 0.7959 0.5730 0.7142
SAM [26] 0.8048 0.5692 0.7096

Materialistic [54] 0.8077 0.5678 0.7169

lower bound 0.6789 0.4629 0.6843

CLIP Classif. ↑
ρ(M) top-1 top-5

ACG 47.78 85.88

O
ur

s OS masks [5] 47.03 85.12
SAM [26] 43.71 80.83

Materialistic [54] 50.89 86.82

Table 2. Resemblance to SVBRDF dataset. We evaluate our ex-
tracted materials with various regions proposals w.r.t. materials
from ACG (left). We also report zero-shot classification on ACG
(right) which measures ability of CLIP to classify the class of the
re-rendered material [43]. Both results demonstrate that our mate-
rials have coherent class-wise characteristics without class anno-
tations, irrespective of the segmenter used.

Furthermore, we show in Fig. 6 a visual comparison of
‘Ours ACG7→SD’ vs ‘source-only (ACG)’, on TexSD un-
seen samples. It shows our adaptation better decomposes
images, ultimately producing more realistic 3D renderings.

4.4. Material extraction

Given the lack of datasets combining real scenes with
region-wise materials annotations, we highlight the com-
plexity of evaluating all components of our method together.
Resemblance to SVBRDF datasets. We design exper-
iments using OpenSurfaces (OS) and ACG, allowing us to
understand if Material Palette preserves the expected char-
acteristics of a material region. Considering that datasets
class ontologies differ, we map OS and ACG classes to a
common set of 14 materials Cm, detailed in the supplemen-
tary, in which OS classes are grouped following [61].

In a first experiment, we use OS ground truth,
i.e. user-annotated material segmentation masks, as R,
and automatically extract the associated materials MSD
with Material Palette. Given that in the OS ground truth
the material class c of R is known (but not the intrinsics),
we compare the extracted MSD with those of materials of
the same class in ACG. We define an upper bound by eval-
uating the same extracted materials but on all other ma-
terials in ACG. Intuitively, if results are better than the
upper bound, we correctly mapped the appearance of a
particular material class to visual features specific to that
class. In other words, a material labeled as ‘brick’ in a
natural image should lead to extracted maps more similar
to ‘brick’ samples in ACG, than to other classes such as
‘wood’. In practice, the evaluation is conducted by sam-
pling 100 {MSD, M̃} pairs and evaluating LPIPS [65] be-
tween them (lower is better), for each of the 14 material
classes. Considering class c ∈ Cm, Ours will evaluate
{M c

SD, M̃
c} pairs ∀c ∈ Cm, while the upper bound will

have {M c
SD, M̃

c̄} where c̄ is a random c̄ ̸= c. The re-
ported LPIPS values are averaged over all classes. From
Tab. 2 (left), ‘Ours-OS Masks’ improves performance over
the upper bound, proving the effectiveness of our method.

Materialistic SAM User-defined

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (m) (n) (o)

Figure 7. Material palettes. Results on images gathered on the internet with regions extracted using Materialistic, SAM, or user-defined.

Rendering w/ GT GT (top) / Ours (bott.) Rendering w/ Ours

P
LPIPS ↓

A N R
SD random 0.8163 0.6895 0.7441
ours (user) 0.6839 0.6254 0.5951

ACG random 0.6547 0.4508 0.5600

Figure 8. End-to-end evaluation. (top) 3D scenes are edited with
ACG materials that we extract and re-render for direct comparison.
(bottom) We quantify the extraction quality using LPIPS [65].

Additionally, we propose a lower bound, following our
pipeline but using {M c

ACG, M̃
c} where MACG are estimated

ACG maps from single-view samples of class c. We also
evaluate the impact on material extraction of our automated
pipeline using either SAM [26] or Materialistic [54] as re-
gion segmenters (Sec. 3.4). We highlight how in all se-
tups we achieve comparable performance, always improv-
ing over the lower bound.

In a second experiment, we propose an evaluation with
CLIP [43]. For each class c ∈ Cm, we generate textures
using PromptsGen (cf. Sec. 4.5) and evaluate the CLIP
ViT-B/32 zero-shot classification performance of all MSD,
rendered with random illumination. We do the same for all
ground truth M̃ in ACG. In Tab. 2 (right) we report accu-

racies averaged over Cm, comparable performance suggest
we are able to render materials similar to ACG.

Qualitative evaluation. In Fig. 7 we visualize
web-scraped images and the materials extracted by
Material Palette using regions from SAM [26], Material-
istic [54] or a User input. Each material is rendered on a 3D
sphere in Blender with a color below matching its region
color. Given the task complexity, we emphasize the quality
of the extraction for a wide variety of complex materials:
bricks, tiles, skins, fur, etc. In particular, we highlight the
quality of bricks in (a)3 as well as in (j) and (j) with a dif-
ferent segmenter, and more astonishingly in the small roof
region of (o). In natural images, materials also match ap-
pearances such as crocodile skin (i), or fur of jaguar (k),
giraffe (g) and zebra (g). Other noticeable results are the
complex mosaic pattern (c) or damaged wall (d) and (d).

End-to-end re-rendering. We also design a challeng-
ing end-to-end evaluation leveraging realistic 3D scenes.
Through automatic editin we replace some 3D objects ma-
terial with a PBR material of ACG, thus rendering a total of
174 images (2 scenes, 3 views) comprising 10 materials for
each of the 16 dominant classes of ACG. As the latter comes
with SVBRDF ground truths, we compare them with our
Material Palette extractions on the rendered images with
ad-hoc user-input regions. Visuals in Fig. 8 show the scenes
rendered with GT materials, along with our extracted ma-
terials and re-renderings. Our materials capture the main
characteristics though we observe some over/under satura-
tion, highlighting the task complexity. Moreover, we pro-
vide quantification to compare LPIPS(↓) vs ground truth
ACG for a ‘SD random’ generation prompted with the true
class compared to a random ACG material of the true class.
Notably, our materials are much closer to ACG than SD
generation, demonstrating the benefit of our pipeline over
text-to-image generation.

3Here, (a) refers to material of the red region from image (a) of Fig. 7.

region cin = 128 cin = 256 cin = 512

c x
=

64
c x

=
12

8

“a photo of S∗ texture” “S∗” “a photo of a S∗” “an object with S∗ texture”

■

■

■

Figure 9. Inversion ablation. We show how crop and upsampling
sizes affect SD generation results (top). Effects of PromptTrain
for learning S∗ are also given (bottom). For all four inversions, we
provide generations using the templates ■, ■, and ■ (cf. Fig. 10).
We highlight in green the parameters used.

FID ·10−2 ↓ KID ·102 ↓ Qualitative
Prompt templates A N R A N R Paper Pavement

■ “a photo of a Sc” 1.89 1.74 1.83 2.60 6.52 3.75

■ “a Sc material” 1.83 1.60 1.67 2.38 5.42 2.74

■ “a Sc texture” 1.72 1.54 1.63 1.82 5.27 2.86

■ “realistic Sc texture in top view” 1.55 1.27 1.59 1.54 3.34 3.32

■ “high resolution realistic Sc tex-
ture in top view”

1.55 1.30 1.55 1.71 3.48 3.34

Figure 10. Prompt generation. We compare prompt templates
when generating using Sc. With more detailed prompts and the
word “texture”, we can generate images similar to ACG.

“classroom” “flat-front” “flat-back”

Figure 11. Scene editing results. We edit objects (top-left insets)
of 3D scenes using materials extracted from real-world images.

4.5. Ablations

Inversion. Considering we face objects of varying sizes,
we ablate the input size used during inversion. Fig. 9 (top)
shows the crop size cx and training input size cin (i.e., up-
sampling size). Considering that crops have a much lower

resolution than the pre-trained SD v1.5 inputs (512px), we
make two choices: (i) extract crops with largest cx pos-
sible within R, and (ii) finetune SD at a lower resolution
(cin = 256). This minimizes the input distortion while re-
taining good generation at 512px and beyond.

Additionally, we evaluate Fig. 9 (bottom) the choice
of PromptTrain when learning S∗ by showing generations
using three prompts from Fig. 10. We use “an object with
S∗ texture” as PromptTrain when learning the concept.
This motivates our choices for learning S∗ (Sec. 3.2).
Prompt engineering. We find that choosing the cor-
rect PromptsGen allows generating material images with
the correct appearance. We ablate in Fig. 10 (left) different
prompts by sampling 10 images per ACG class and process-
ing them with our decomposition (Sec. 3.3). We then eval-
uate FID and KID against ACG annotations and rendered
images. We find that the word “texture” improves synthe-
sis over generic templates and removes additional context
favoring top-view appearance. Furthermore, the text-to-
image generation benefits from additional adjectives. Vi-
sual comparison of generated samples is in Fig. 10 (right).

4.6. 3D Scene editing.

We consider the extracted materials for scene editing ap-
plications. In Fig. 11, we present renderings of 3D scenes,
replacing materials of objects (highlighted in insets) with
ones extracted in real-world images with Material Palette.
Note the realism of our jaguar (middle) and giraffe (right)
sofas, or the bamboo wall (left).

5. Discussion
We introduced Material Palette, a comprehensive ap-
proach designed to extract tileable, high-resolution PBR
materials from single real-world images. Although capa-
ble of extracting accurate materials, our method faces some
unexpected limitations. For example, while prior methods
may struggle to regress complex patterns we found it more
challenging to capture simple uniform materials. In such
cases, the concept collapses, leading to color artifacts, com-
mon in diffusion models. Another more predictable issue
involves illumination ambiguities – particularly noticeable
in shaded surfaces – causing inconsistent colors. Lastly,
Material Palette is capable of making some geometric cor-
rections, but cannot rectify slanted surfaces or account for
strong distortion (perspective, lenses, depth of field). Ad-
dressing these shortcomings calls for further refinements.
Material Palette shows very promising results on a newly
introduced challenging task. We hope our work sparks in-
teresting research in the same direction.
Acknowledgment. Research mainly funded by the French Agence Na-
tionale de la Recherche (ANR), project SIGHT (ANR-20-CE23-0016).
Fabio Pizzati was partially funded by KAUST (Grant DFR07910). Results
obtained with GENCI-IDRIS (Grant 2023-AD011014389).

Material Palette: Extraction of Materials from a Single Image

Supplementary Material

In this supplementary material, we provide experimen-
tal details on Material Palette and baselines in Sec. A,
and a description of our TexSD texture-generated dataset
in Sec. B. Further, we report additional qualitative results
in Sec. C and discuss limitations in Sec. D. Sources of our
scenes and visuals are reported in Sec. E. We also illustrate
the use of our extracted materials for 3D scene editing in
the supplementary video.
Our code and dataset will be made public to foster research.

A. Experimental details
In this section, additional information is provided to ensure
the reproducibility of our method and provide further in-
sights. First, we highlight in Sec. A.1 details about the
extraction of textures, how to ensure tileability, and also
address issues with color shifts. We report decomposition
details in Sec. A.2, and elaborate on the use of segmenters
in Sec. A.3. Finally, Sec. A.4 contains evaluation details.

A.1. Tileable texture extraction

Crop selection. We extract crops from R at different reso-
lutions cx = {25, 26, 27, 28} using a moving window with
stride cx/5. We retain crops of the largest scale that remain
within the confines of R, enabling us to select the optimal
scale while accommodating the variable size of R. This
way, the maximum amount of information within each re-
gion is kept to learn the concept S∗.

Seamless generation. The Stable Diffusion checkpoint we
use – version 1.5 4 – is trained at 512px. Interestingly, we
found that the VAE decoder can output at a resolution of
1024px without any noticeable performance drop. To en-
sure tileability, we use noise unrolling [57] and apply Pois-
son solving [41] to remove seams on the borders 5.

High-res generation. When generating textures larger than
1024×1024px, we stitch texture patches together. Although
noise unrolling ensures the continuity of generated texture
patches, seams still remain if patches are directly concate-
nated (Fig. 12, left). Similar to ControlMat [57], we decode
overlapping 512 × 512 patches and apply a weighted av-
erage between them to remove visible seams from the re-
sulting stitched texture (center). The patches overlap by 8
pixels on all sides (‘blending’ row). We present denoising
times over 10 runs in Tab. 3 at 4 output resolutions (1K up
to 8K) on a Tesla V100-16GB. Denoising times increase
quadratically w.r.t. resolution size.

4https://huggingface.co/runwayml/stable-diffusion-v1-5
5https://github.com/bchao1/fast-poisson-image-editing

concat w-mean seams

bl
en

di
ng

S
c
=

m
ar

bl
e

S
c
=

ro
ck

Figure 12. Patched decoding. Assembling patches decoded sep-
arately by SD. left: a direct concatenation of the patches leads
to visible seams; middle: blending patches with a weighted av-
erage; right the location of the seams. The blending function
shown above represents how two adjacent patches pi−1 and pi are
stitched together. We zoom in on two areas: red and blue.

Concept learning. To learn S∗, we fine-tune Stable Dif-
fusion (v1.5 weights) [47] and run LoRA [22] Dream-
booth [50] using PEFT 6. We train for 800 steps with a
batch size of 1, and a learning rate of 1e−4. Input crops
are resized to cin = 256 (cf. Sec. 4.5) and we observed
that augmentations are important to learn S∗ without over-
fitting to the training views. Since textures are not all ro-
tation invariant, we only apply random flip augmentations.
Optimization times take no more than 5 minutes per S∗ on
a single Tesla V100-16GB. In Fig. 13, convergence times
are ablated. With 400 steps our strategy yields good results.

Color shift correction. We solve the common color shift
of diffusion model outputs [57] by normalizing the gener-
ated patch with the per-channel statistics of R. We ablate
the importance of this operation in Fig. 14 showing results
of a LoRA DreamBooth trained on crops extracted from I
with and without color correction. In practice, we directly
renormalize the generated samples with the mean and std

6https://github.com/huggingface/peft

I 50 100 200 400 500 700 800 1000 1200

Figure 13. Convergence. Generations at different timesteps of the low-rank adaptation [22] of SD when learning S∗ with Dreambooth [50].
Although in some cases, fewer timesteps are needed, we generally found that 800 steps work best to learn S∗.

1K 2K 4K 8K
1,024x1,024 2,048x2,048 4,096x4,096 8,192x8,192

n 4 16 64 256
t 11s 43s 170s (≈3min) 685s (≈11min)

Table 3. Denoising times. All resolutions require 16GB. When
dealing with resolutions larger than 1024px, latent features and
textures are processed in batches of 16 patches. For 50 denoising
steps, t ≈ n ∗ 2.7s, with n the total number of patches.

of R. We highlight that the lack of renormalization on out-
puts (cols 2-3) leads to a noticeable color shift (darker tone).
While applying this operation (cols 4-5) allows us to get a
color that matches the input region R.

R w/o color corr. w/ color corr.

Figure 14. Color correction. We show the purpose of our color
correction applied to generated textures. We show two generations
per concept. The right-most outputs better match the color of R.

A.2. Decomposition training

The decomposition network (i.e., f) described in Sec. 4.1 is
illustrated in Fig. 15. We train the source model fS on S for
1,000 epochs and finetune on S + T for 100 epochs. For
augmentations, we apply random 512x512 crops, random

horizontal/vertical flips as well as random 90° increment ro-
tations. The decomposition maps A, N , and R are predicted
by three separate decoders with tanh activation functions,
each outputting spatial 3-, 2-, and 1-channel maps, respec-
tively. The z-axis of N is set to 1 and normalized. Finally A
and R are mapped to [0, 1]. We apply the log on A and R, as
well as all rendered views before computing the L1 losses
to penalize larger errors. For source training, we use a batch
size of 4, while when training on both source and target, we
use batches of 2+2. Adam [25] is chosen as optimizer with
a learning rate of 1e−4 and λ is set to 0.1 [9].

Figure 15. Network architecture. We use a Resnet-101 back-
bone with U-Net skip connections (left) to three separate custom
decoders (center), one for each decomposed map. We apply dif-
ferent normalizations depending on the output type.

A.3. Segmenters

SAM. When using SAM [26], we retrieve the 16 largest
masks from the image. We notice that SAM tends to output
masks encompassing large portions of the image which are
undesired for our task since they are likely to encompass
more than one material. Instead, smaller masks are more
prone to have a single material displayed. Thus, for over-
lapping masks with IoU > 0.5 we discard the largest.
Materialistic. Materialistic [54] requires an initial query
point, so we select a random point within each of our user-
defined regions and segment using the pre-trained weights.
User. Regions are defined by a single human annotator.

A.4. Evaluation

In order to use the annotation masks from the ACG dataset,
in “Resemblance to SVBRDF dataset.” evaluation (Tab. 2,
left), we apply a class mapping between ACG and OS [61].
The mapping consists of 14 classes detailed in Tab. 4.

“brick” (01) → “brick” “plastic” (17) → “plastic”
“cardboard” (02) → “cardboard” “polished stone” (18) → “marble”/“granite”

“carpet” (03) → “carpet” “stone” (21) → “paving stone”
“fabric” (05) → “fabric” “tile” (22) → “tiles”

“laminate” (11) → “wood floor” “wallpaper” (23) → “wallpaper”
“leather” (12) → “leather” “wicker” (24) → “wicker”

“paper” (16) → “paper” “wood” (25) → “wood”

Table 4. Class mapping. For evaluation purposes, we construct a
mapping as the intersection of class sets from ACG and OS. Num-
bers correspond to label ids from OpenSurfaces [61].

Inference heuristics. For visualization only, we discard re-
gions for which material images PSD have a LPIPS > 0.65
w.r.t. PC . This heuristic helps filter incorrect materials.

B. TexSD – Texture generated dataset

For generating our support dataset from Stable Diffusion,
named TexSD, we compose an ontology (Tab. 5) of ma-
terial classes starting from material categories in ACG (top
row), complemented by classes obtained by providing Chat-
GPT (bottom row) the list of ACG classes and querying it to
generate a list of “complementary classes” and “additional
materials”. We use SD [47] v1.5 and apply noise unrolling,
outputting images directly at 1024px (cf. Sec. A). At in-
ference, we use the same prompt templates as when condi-
tioning with a S∗, except here a class name Sc is used. For
instance, given Sc = pebbles, we can query SD with “re-
alistic pebbles texture in top view” to generate a texture of
pebbles. We recall the templates PromptsGen:

- “realistic Sc texture in top view” (■)
- “high resolution realistic Sc texture in top view” (■)
- “top view realistic Sc texture” (⊠)
- “top view realistic texture of Sc” (⊠)

We show some samples from TexSD in Fig. 16.

A
m

bi
en

tC
G

asphalt, bamboo, bark, bricks, candy, cardboard, carpet, chipboard, clay, concrete, cork,
fabric, facade, foam, glazed terracotta, grass, gravel, ground, ice, ivory, lava, leather,

marble, moss, paint, painted bricks, painted plaster, painted wood, paper, paving stones,
planks, plaster, plastic, porcelain, road, rock, rocks, roofing tiles, shells, snow, sponge,
tactile paving, terrazzo, tiles, wallpaper, wicker, wood, wood chips, wood floor, wood

siding.

C
ha

tG
PT

acrylic, bamboo flooring, brocade, burlap, burnout velvet, canvas, carbon fiber, ceramic
tiles, checkered, chiffon, cobblestone, concrete blocks, concrete pavers, corduroy, cotton,
crocheted, crushed velvet, crystal, damask, denim, dupioni, embossed, felt, fiberboard,

fur, gingham, giraffe fur, glass, granite, hammered velvet, hempcrete, herringbone,
jacquard, knitted, lace, linen, linoleum, linoleum, mahogany wood, mosaic tiles, oak
wood, octagonal paving, onyx, organza, particle board, pine wood, plaid, plywood,

quartz top, quartzite top, rammed earth, reptile skin, resin, ribbed, rubber, rustic wood,
sand, sandstone, sateen, satin, shantung, silk, silk velvet, slate, snake skin, straw bale,
stucco, suede, taffeta, teak wood, terracotta, tiger fur, travertine, tweed, velvet, vinyl,

vinyl, woodgrain, wool, woven, zebra fur.

Table 5. TexSD ontology. Classes used to generate the dataset.
We complement the classes existing in ACG using ChatGPT.

Figure 16. TexSD. The class names Sc are given left-to-right. 1st

row: bambo, candy, brick wall, tiger fur; 2nd row: zebra fur, cor-
duroy, veneer; 3rd row: fur, fabric, giraffe fur, granite, checkered
pattern; 4th row: onyx, gravel, leather, marble; 5th row: marble,
marble mosaic, oak wood; 6th row: pebbles, painted wood, porce-
lain, quartzite top, wood floor; 7th row: terrazzo, rustic wood,
slate, rock; last row: damask, resin, fur.

C. Qualitative results
In this section, we present additional qualitative results, for
easing visualization of the high-quality extraction of tex-
tures and related materials.

Texture extraction from planar surfaces In this experi-
ment, we further highlight possible applications of our tex-
ture extraction. Assuming an available top-view material
picture, we can sample crops from the whole image (hence
R = I) and generate a tileable texture with our proposed
texture extraction pipeline. The resulting images in Fig. 17
are readily usable for any CG application.

I = R PSD I = R PSD

Figure 17. Texture extraction. Here, textures are extracted from
planar objects that present interesting patterns. Overall S∗ has
the powerful ability to encapsulate the pattern. This conditioning
allows generating tileable high-resolution textures (here 1024²)
which can be a valuable tool for CG artists.

Large textures extraction. In Fig. 18, we present high-
resolution examples of extracted textures from real images.
This shows further evidence of how Material Palette is able
to correctly reproduce the learned texture and extend it to

arbitrary resolutions. We highlight the high quality and the
absence of visible seams even at 8K resolution.

Comparison with ACG renderings. We compare qual-
itatively materials in ACG and materials extracted by
Material Palette in Figs. 19 and 20. We highlight how com-
mon materials emerge in both cases (e.g., bricks, stones,
etc.) while our extracted materials exhibit unique ones (e.g.,
fur, fruits) challenging to extract from controlled scenarios.

Additional visualization. We also extend the visualization
present in the main paper. In Fig. 21, we present web-
collected images and corresponding material palettes (simi-
lar to main paper Fig. 7) but this time showing three samples
per material. In Fig. 22, we propose additional results for
the end-to-end estimation task (main paper, Fig. 8)

Blender rendering. All 3D renders are made in Blender,
using the Principled BSDF shader with the predicted
albedo, roughness, and normals map. To improve realism,
we use displacement maps inferred from our surface nor-
mals using DeepBump 7. The renderings are done using
the rendering engine ‘Cycles’, with displacement as bumps.
Some objects (e.g. floor) have a lower displacement scale
than others to avoid irregular surfaces that would be unre-
alistic. Importantly, we do not adjust the shader parame-
ters per-material to preserve the true appearance of our ex-
tracted materials.

7https://github.com/HugoTini/DeepBump

I 2,048² 4,096² I 2,048² 4,096²
8
,
1
9
2
²

8
,
1
9
2
²

Figure 18. High resolution outputs. We provide generations for each image at three resolutions.

AmbientCG Material Palette

Figure 19. Sphere renderings (a). Showing spheres of materials from AmbientCG (left) and ones extracted from real-world images using
our proposed pipeline, Material Palette (right). Renderings are done in Blender with a HDRI map.

AmbientCG Material Palette

Figure 20. Sphere renderings (b). Showing spheres of materials from AmbientCG (left) and ones extracted from real-world images using
our proposed pipeline, Material Palette (right). Renderings are done in Blender with a HDRI map.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 21. Material palettes. We present some results of our method Material Palette on images gathered on the web. Different from the
palettes presented in the main paper, here we show three variations per extracted material.

Figure 22. End to end evaluation. We edit 3D scenes with ACG materials rendering different scenes and viewpoints (each column,
left). The edited regions are shown in the inset. Then, we use Material Palette to extract edited materials. This allows us to compare
Material Palette extractions w.r.t. ACG ground truth (right).

D. Limitations
Material Palette lacks contextual information during the
material decomposition stage and therefore may perform
poorly with strong shading due to lighting or complex ge-
ometry. For complex materials, we show failure cases
in Fig. 23. Overall, we notice that our pipeline may present
incorrect S∗ estimation for complex patterns with strong ge-
ometrical constraints (rows 1-2). Although our approach
corrects geometry and homogenizes light information, er-
rors may still be present with highly tilted surfaces or strong
shadows (rows 3-4). Finally, the SD network tends to gen-
erate artifacts for highly saturated materials (last two rows).
However, for uniform materials as in Fig. 24, we note we
are still performing well even in complex lighting.

I sample 1 sample 2 sample 3

Figure 23. Failure cases. Complex patterns are difficult to extract
(first two rows). Highly tilted surfaces create a bias in the opti-
mization and are not properly rectified (third row). Shadows are
entangled in the extraction (fourth row). We notice some weak-
nesses when trying to estimate from highly saturated objects (no-
tice the blue spots last row).

Figure 24. Complex lighting. Uniform material extraction in
complex lighting

E. Acknowledgements
We provide the list of resources (images and 3D scenes) that
may have been used during this project in Tab. 6.

name author resource link

private flat Flavio Della Tommasa https://blenderartists.org/t/private-flat/1294642

classroom Christophe Seux https://download.blender.org/demo/test/classroom.zip

brown wooden table Skitterphoto https://www.pexels.com/photo/brown-wooden-center-table-584399/

white couch table QuarkStudio https://www.pexels.com/photo/white-padded-couch-in-front-of-black-wooden-center-table-2506986/

wooden kitchen Max Rahubovskiy https://www.pexels.com/photo/contemporary-kitchen-and-dining-room-interior-with-shiny-chandelier-7045364/

empty black chair Saviesa Home https://www.pexels.com/photo/empty-two-black-chair-2089696/

mosque man Mihai Vlasceanu https://www.pexels.com/photo/mosque-door-surrounded-by-decorative-patterns-18538944/

fes door front Gül Işık https://www.pexels.com/photo/arabian-front-door-with-arch-and-mosaic-13794309/

door front Faruk Tokluoğlu https://www.pexels.com/photo/decorative-patterns-on-entrance-to-mosque-13811595/

innsbruck Waldemar https://www.pexels.com/photo/colourful-houses-in-innsbruck-austria-5052366/

four stools Pixabay https://www.pexels.com/photo/four-gray-bar-stools-in-front-of-kitchen-countertop-279648/

ivy brick Boys In Bristol SmokZ https://www.pexels.com/photo/ivy-growing-on-building-brick-wall-15869273/

fall modern Tanya Pro https://unsplash.com/photos/brown-and-white-concrete-building-oPyu636ASPw

brown brick house pixabay https://www.pexels.com/photo/brown-wall-paint-house-near-at-garden-209315/

hold interior home Maria Orlova https://www.pexels.com/photo/interior-of-cozy-room-in-old-house-4906484/

colored brick Fatih https://unsplash.com/photos/pink-and-yellow-wall-paint-kgqu_qs3B78

joint homes Erol Ahmed https://unsplash.com/photos/two-white-wooden-doors-with-grills-FTy5VSGIfiQ

cat Camilo Ospina https://www.pexels.com/photo/cat-on-furniture-in-room-18597909/

parrot Dušan veverkolog https://unsplash.com/photos/blue-and-yellow-parrot-perched-on-tree-during-daytime-2HgyU4YwraQ

crocodile Philipp Deus https://www.pexels.com/photo/a-crocodile-in-close-up-photography-3741492/

church David Besh https://www.pexels.com/photo/white-and-black-concrete-house-969260/

okapi Magda Ehlers https://www.pexels.com/photo/okapi-animal-in-zoo-12788062/

brick modern Expect Best https://www.pexels.com/photo/facade-of-modern-building-against-clear-sky-323781/

blue sofa Max Rahubovskiy https://www.pexels.com/photo/interior-of-spacious-living-room-with-minimalist-furniture-6492397/

coffee shop Emre Can Acer https://www.pexels.com/photo/three-brown-wooden-dinette-sets-2079448/

damaged bricks Pixabay https://www.pexels.com/photo/abandoned-ancient-antique-architecture-235986/

modern tub Max Rahubovski https://www.pexels.com/photo/bathroom-interior-with-sink-on-counter-near-mirror-and-bath-6444967/

mountain tub Max Rahubovskiy https://www.pexels.com/photo/interior-of-bathroom-with-mirror-above-sink-7061423/

merrigum house wikimedia https://commons.wikimedia.org/wiki/File:MerrigumHouse3.JPG

modern mansion Max Rahubovskiy https://www.pexels.com/photo/contemporary-villa-against-cloudy-blue-sky-7031595/

oldschool kitchen Polina Kovaleva https://www.pexels.com/photo/kitchen-room-with-ornamental-plants-5644353/

sofa space Charlotte May https://www.pexels.com/photo/sofa-with-cushions-in-cozy-apartment-5825404/

vintage living Derick McKinney https://unsplash.com/photos/grey-pillow-on-chair-Tc349sxFa2U

wooden door Hisham Yahya https://www.pexels.com/photo/wooden-door-of-a-bricked-wall-2909959/

wooden furniture PNW Production https://www.pexels.com/photo/brown-wooden-cabinet-beside-white-wall-8251248/

rundown home Graham Meyer https://unsplash.com/photos/brown-brick-house-near-green-trees-during-daytime-nV1phwYx3J0

stone house Bernard Hermant https://unsplash.com/photos/brown-and-white-concrete-house-near-green-grass-field-during-daytime-SLW8vO8Erwc

river stone Pixabay https://pixabay.com/photos/house-river-running-waterfall-2548478/

cottage Alex Baber https://unsplash.com/photos/closed-brown-house-door-tTKgcVWPdLM

ivy bricks Liv Cashman https://unsplash.com/photos/blue-wooden-door-on-brown-brick-house-oJAM9h0158c

green home Binyamin Mellish https://www.pexels.com/photo/lighted-beige-house-1396132/

wooden door Tirachard Kumtanom https://www.pexels.com/photo/photo-of-wooden-door-near-window-887822/

large garage Curtis Adams https://www.pexels.com/photo/photo-of-house-3555615/

marble bedroom Max Rahubovskiy https://www.pexels.com/photo/bedroom-interior-with-vases-with-branch-near-bed-and-mirror-6480209/

concrete wall Henry Co. https://www.pexels.com/photo/brown-metal-staircase-and-gray-painted-wall-1246078/

ancient wall Pixabay https://www.pexels.com/photo/ancient-architecture-brick-brick-wall-277544/

brick fireplace Max Rahubovskiy https://www.pexels.com/photo/brick-fireplace-in-a-living-room-7746461/

bricks paradise Charles Parker https://www.pexels.com/photo/weathered-brick-residential-building-on-city-street-5847374/

home couch Max Rahubovskiy https://www.pexels.com/photo/room-with-open-kitchen-near-sofa-6782429/

orange wool Engin Akyurt https://www.pexels.com/photo/brown-knitted-textile-1487703/

green tiles Sutee Pheera https://www.pexels.com/photo/green-woven-pavement-570047/

chevron bricks Mitchell Luo https://www.pexels.com/photo/close-up-shot-of-a-brick-wall-4115538/

yellow leaf Hilary Halliwell https://www.pexels.com/photo/close-up-photography-of-dried-leaf-612328/

blue polygons Damir Mijailovic https://www.pexels.com/photo/abstract-background-of-wall-with-geometric-ornament-3695238/

yellow facade Athena https://www.pexels.com/photo/yellow-and-black-pattern-2254103/

blue tiles Natã Romualdo https://www.pexels.com/photo/brown-low-top-sneakers-2904284/

human skin Karolina Grabowska https://www.pexels.com/photo/close-up-view-of-human-skin-4046567/

beads Magda Ehlers https://www.pexels.com/photo/assorted-color-beads-1331705/

colored stones Engin Akyurt https://www.pexels.com/photo/close-up-photo-of-assorted-rocks-3129641/

multicolored tiles Monstera Production https://www.pexels.com/photo/abstract-backdrop-of-multicolored-tiled-floor-7794425/

red planks Magda Ehlers https://www.pexels.com/photo/red-wooden-surface-960137/

legos Omar Flores https://unsplash.com/photos/blue-red-and-white-artwork-lQT_bOWtysE

checkered board Wikimedia Commons https://commons.wikimedia.org/wiki/Category:SVG_checkered_patterns

old wood Suzy Hazelwood https://www.pexels.com/photo/gray-wall-with-cracked-blue-paint-2096543/

coffee beans Polina Tankilevitch https://www.pexels.com/photo/brown-coffee-beans-4109743/

crumbling paint Laura Tancredi https://www.pexels.com/photo/shabby-brick-wall-with-crumbling-paint-7078669/

graffiti brick ShonEjai https://www.pexels.com/photo/closeup-photo-of-brown-brick-wall-1227511/

minerals msvr https://www.pexels.com/photo/gray-and-yellow-gravel-stones-997704/

white paint Henry Co. Henry Co. https://www.pexels.com/photo/white-painted-wall-1939485/

Table 6. Resources. List of images and 3D scenes used in this project. All properties have open licenses.

https://blenderartists.org/t/private-flat/1294642
https://download.blender.org/demo/test/classroom.zip
https://www.pexels.com/photo/brown-wooden-center-table-584399/
https://www.pexels.com/photo/white-padded-couch-in-front-of-black-wooden-center-table-2506986/
https://www.pexels.com/photo/contemporary-kitchen-and-dining-room-interior-with-shiny-chandelier-7045364/
https://www.pexels.com/photo/empty-two-black-chair-2089696/
https://www.pexels.com/photo/mosque-door-surrounded-by-decorative-patterns-18538944/
https://www.pexels.com/photo/arabian-front-door-with-arch-and-mosaic-13794309/
https://www.pexels.com/photo/decorative-patterns-on-entrance-to-mosque-13811595/
https://www.pexels.com/photo/colourful-houses-in-innsbruck-austria-5052366/
https://www.pexels.com/photo/four-gray-bar-stools-in-front-of-kitchen-countertop-279648/
https://www.pexels.com/photo/ivy-growing-on-building-brick-wall-15869273/
https://unsplash.com/photos/brown-and-white-concrete-building-oPyu636ASPw
https://www.pexels.com/photo/brown-wall-paint-house-near-at-garden-209315/
https://www.pexels.com/photo/interior-of-cozy-room-in-old-house-4906484/
https://unsplash.com/photos/pink-and-yellow-wall-paint-kgqu_qs3B78
https://unsplash.com/photos/two-white-wooden-doors-with-grills-FTy5VSGIfiQ
https://www.pexels.com/photo/cat-on-furniture-in-room-18597909/
https://unsplash.com/photos/blue-and-yellow-parrot-perched-on-tree-during-daytime-2HgyU4YwraQ
https://www.pexels.com/photo/a-crocodile-in-close-up-photography-3741492/
https://www.pexels.com/photo/white-and-black-concrete-house-969260/
https://www.pexels.com/photo/okapi-animal-in-zoo-12788062/
https://www.pexels.com/photo/facade-of-modern-building-against-clear-sky-323781/
https://www.pexels.com/photo/interior-of-spacious-living-room-with-minimalist-furniture-6492397/
https://www.pexels.com/photo/three-brown-wooden-dinette-sets-2079448/
https://www.pexels.com/photo/abandoned-ancient-antique-architecture-235986/
https://www.pexels.com/photo/bathroom-interior-with-sink-on-counter-near-mirror-and-bath-6444967/
https://www.pexels.com/photo/interior-of-bathroom-with-mirror-above-sink-7061423/
https://commons.wikimedia.org/wiki/File:MerrigumHouse3.JPG
https://www.pexels.com/photo/contemporary-villa-against-cloudy-blue-sky-7031595/
https://www.pexels.com/photo/kitchen-room-with-ornamental-plants-5644353/
https://www.pexels.com/photo/sofa-with-cushions-in-cozy-apartment-5825404/
https://unsplash.com/photos/grey-pillow-on-chair-Tc349sxFa2U
https://www.pexels.com/photo/wooden-door-of-a-bricked-wall-2909959/
https://www.pexels.com/photo/brown-wooden-cabinet-beside-white-wall-8251248/
https://unsplash.com/photos/brown-brick-house-near-green-trees-during-daytime-nV1phwYx3J0
https://unsplash.com/photos/brown-and-white-concrete-house-near-green-grass-field-during-daytime-SLW8vO8Erwc
https://pixabay.com/photos/house-river-running-waterfall-2548478/
https://unsplash.com/photos/closed-brown-house-door-tTKgcVWPdLM
https://unsplash.com/photos/blue-wooden-door-on-brown-brick-house-oJAM9h0158c
https://www.pexels.com/photo/lighted-beige-house-1396132/
https://www.pexels.com/photo/photo-of-wooden-door-near-window-887822/
https://www.pexels.com/photo/photo-of-house-3555615/
https://www.pexels.com/photo/bedroom-interior-with-vases-with-branch-near-bed-and-mirror-6480209/
https://www.pexels.com/photo/brown-metal-staircase-and-gray-painted-wall-1246078/
https://www.pexels.com/photo/ancient-architecture-brick-brick-wall-277544/
https://www.pexels.com/photo/brick-fireplace-in-a-living-room-7746461/
https://www.pexels.com/photo/weathered-brick-residential-building-on-city-street-5847374/
https://www.pexels.com/photo/room-with-open-kitchen-near-sofa-6782429/
https://www.pexels.com/photo/brown-knitted-textile-1487703/
https://www.pexels.com/photo/green-woven-pavement-570047/
https://www.pexels.com/photo/close-up-shot-of-a-brick-wall-4115538/
https://www.pexels.com/photo/close-up-photography-of-dried-leaf-612328/
https://www.pexels.com/photo/abstract-background-of-wall-with-geometric-ornament-3695238/
https://www.pexels.com/photo/yellow-and-black-pattern-2254103/
https://www.pexels.com/photo/brown-low-top-sneakers-2904284/
https://www.pexels.com/photo/close-up-view-of-human-skin-4046567/
https://www.pexels.com/photo/assorted-color-beads-1331705/
https://www.pexels.com/photo/close-up-photo-of-assorted-rocks-3129641/
https://www.pexels.com/photo/abstract-backdrop-of-multicolored-tiled-floor-7794425/
https://www.pexels.com/photo/red-wooden-surface-960137/
https://unsplash.com/photos/blue-red-and-white-artwork-lQT_bOWtysE
https://commons.wikimedia.org/wiki/Category:SVG_checkered_patterns
https://www.pexels.com/photo/gray-wall-with-cracked-blue-paint-2096543/
https://www.pexels.com/photo/brown-coffee-beans-4109743/
https://www.pexels.com/photo/shabby-brick-wall-with-crumbling-paint-7078669/
https://www.pexels.com/photo/closeup-photo-of-brown-brick-wall-1227511/
https://www.pexels.com/photo/gray-and-yellow-gravel-stones-997704/
https://www.pexels.com/photo/white-painted-wall-1939485/

References
[1] AmbientCG. Pbr repository. https://www.ambientcg.
com, 2017. Accessed: 2023-04-01. 3, 4, 5

[2] Louis-Philippe Asselin, Denis Laurendeau, and Jean-
François Lalonde. Deep svbrdf estimation on real materials.
In 3DV, 2020. 1, 2

[3] Jonathan T Barron and Jitendra Malik. Intrinsic scene prop-
erties from a single rgb-d image. In CVPR, 2013. 2

[4] Joseph R Bartels, Jian Wang, William Whittaker, Srinivasa G
Narasimhan, et al. Agile depth sensing using triangulation
light curtains. In ICCV, 2019. 1

[5] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala.
OpenSurfaces: A richly annotated catalog of surface appear-
ance. In ACM TOG, 2013. 5, 6

[6] Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learn-
ing texture manifolds with the periodic spatial gan. In ICML,
2017. 5

[7] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Wearable imagenet: Syn-
thesizing tileable textures via dataset distillation. In CVPR-
W, 2022. 2

[8] CGBookCase. Pbr repository. https://www.cgbookcase.
com, 2019. Accessed: 2023-04-01. 5

[9] Valentin Deschaintre, Miika Aittala, Fredo Durand, George
Drettakis, and Adrien Bousseau. Single-image svbrdf cap-
ture with a rendering-aware deep network. ACM TOG, 2018.
2, 4, 6, 10

[10] Valentin Deschaintre, George Drettakis, and Adrien
Bousseau. Guided fine-tuning for large-scale material trans-
fer. Comput. Graph. Forum, 2020. 2

[11] Valentin Deschaintre, Yiming Lin, and Abhijeet Ghosh.
Deep polarization imaging for 3d shape and svbrdf acqui-
sition. In CVPR, 2021. 2

[12] Olga Diamanti, Connelly Barnes, Sylvain Paris, Eli Shecht-
man, and Olga Sorkine-Hornung. Synthesis of complex im-
age appearance from limited exemplars. ACM TOG, 2015.
2

[13] Alexei A Efros and William T Freeman. Image quilting for
texture synthesis and transfer. In ACM TOG, 2001. 5

[14] Alexei A Efros and Thomas K Leung. Texture synthesis by
non-parametric sampling. In ICCV, 1999. 5

[15] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and
Xin Tong. Deep inverse rendering for high-resolution svbrdf
estimation from an arbitrary number of images. ACM TOG,
2019. 2

[16] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan
Carr, and Jean-Francois Lalonde. Fast spatially-varying in-
door lighting estimation. In CVPR, 2019. 2

[17] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-
ture synthesis using convolutional neural networks. In
NeurIPS, 2015. 5

[18] Thomas Germer, Joanne C Zwinkels, and Benjamin K Tsai.
Spectrophotometry: Accurate measurement of optical prop-
erties of materials. Elsevier, 2014. 1

[19] Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet
Ghosh, Cornelia Denk, and Mashhuda Glencross. Brdf rep-

resentation and acquisition. In Comput. Graph. Forum, 2016.
3

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 5

[21] Berthold KP Horn. Determining lightness from an image.
CGIP, 1974. 2

[22] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In
ICLR, 2022. 4, 5, 9, 10

[23] Carlo Innamorati, Tobias Ritschel, Tim Weyrich, and Niloy J
Mitra. Decomposing single images for layered photo re-
touching. In Comput. Graph. Forum, 2017. 2

[24] Alen Joy and Charalambos Poullis. Multi-view gradient con-
sistency for svbrdf estimation of complex scenes under nat-
ural illumination. arXiv, 2022. 2

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2017. 10

[26] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 1, 5, 6, 7, 11

[27] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In ICML, 2013. 4

[28] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Model-
ing surface appearance from a single photograph using self-
augmented convolutional neural networks. ACM TOG, 2017.
2

[29] Xueting Li, Xiaolong Wang, Ming-Hsuan Yang, Alexei A
Efros, and Sifei Liu. Scraping textures from natural images
for synthesis and editing. In ECCV, 2022. 2, 5

[30] Zhengqi Li and Noah Snavely. Cgintrinsics: Better intrinsic
image decomposition through physically-based rendering. In
ECCV, 2018. 2

[31] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi,
Kalyan Sunkavalli, and Manmohan Chandraker. Inverse ren-
dering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image. In CVPR, 2020. 2

[32] Zhengqin Li, Jia Shi, Sai Bi, Rui Zhu, Kalyan Sunkavalli,
Miloš Hašan, Zexiang Xu, Ravi Ramamoorthi, and Manmo-
han Chandraker. Physically-based editing of indoor scene
lighting from a single image. In ECCV. Springer, 2022. 2

[33] Zicheng Liao, Kevin Karsch, Hongyi Zhang, and David
Forsyth. An approximate shading model with detail decom-
position for object relighting. IJCV, 2019. 2

[34] Yunfei Liu, Yu Li, Shaodi You, and Feng Lu. Unsupervised
learning for intrinsic image decomposition from a single im-
age. In CVPR, 2020. 2

[35] Ivan Lopes, Tuan-Hung Vu, and Raoul de Charette. Cross-
task attention mechanism for dense multi-task learning. In
WACV, 2023. 5

[36] Rosalie Martin, Arthur Roullier, Romain Rouffet, Adrien
Kaiser, and Tamy Boubekeur. Materia: Single image high-
resolution material capture in the wild. In Comput. Graph.
Forum, 2022. 2

https://www.ambientcg.com
https://www.ambientcg.com
https://www.cgbookcase.com
https://www.cgbookcase.com

[37] Tom Monnier, Matthew Fisher, Alexei A Efros, and Mathieu
Aubry. Share with thy neighbors: Single-view reconstruction
by cross-instance consistency. In ECCV, 2022. 2

[38] Takuya Narihira, Michael Maire, and Stella X Yu. Direct
intrinsics: Learning albedo-shading decomposition by con-
volutional regression. In ICCV, 2015. 2

[39] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image genera-
tion and editing with text-guided diffusion models. In ICML,
2022. 2

[40] OpenAI. Chatgpt. chat.openai.org, 2023. Accessed:
2023-05-20. 4

[41] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson
image editing. In Seminal Graphics Papers: Pushing the
Boundaries. SIGGRAPH, 2023. 5, 9

[42] PolyHaven. Pbr repository. https://www.polyhaven.
com, 2021. Accessed: 2023-04-01. 5

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 6, 7

[44] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, 2021. 2

[45] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv, 2022. 2

[46] Carlos Rodriguez-Pardo, Henar Domı́nguez-Elvira, David
Pascual-Hernández, and Elena Garces. Umat: Uncertainty-
aware single image high resolution material capture. In
CVPR, 2023. 2

[47] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4,
5, 9, 11

[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015. 5

[49] Amir Rosenberger, Daniel Cohen-Or, and Dani Lischinski.
Layered shape synthesis: automatic generation of control
maps for non-stationary textures. ACM TOG, 2009. 2

[50] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, 2023. 4, 5, 9, 10

[51] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. In NeurIPS, 2022. 2

[52] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and
Timo Aila. Stylegan-t: Unlocking the power of gans for fast
large-scale text-to-image synthesis. In ICML, 2023. 2

[53] Soumyadip Sengupta, Jinwei Gu, Kihwan Kim, Guilin Liu,
David W Jacobs, and Jan Kautz. Neural inverse rendering of
an indoor scene from a single image. In ICCV, 2019. 2

[54] Prafull Sharma, Julien Philip, Michaël Gharbi, William T.
Freeman, Fredo Durand, and Valentin Deschaintre. Materi-
alistic: Selecting similar materials in images. In ACM TOG,
2023. 5, 6, 7, 11

[55] Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hinton.
Deep lambertian networks. arXiv, 2012. 2

[56] Giuseppe Vecchio, Simone Palazzo, and Concetto Spamp-
inato. Surfacenet: Adversarial svbrdf estimation from a sin-
gle image. In ICCV, 2021. 2, 6

[57] Giuseppe Vecchio, Rosalie Martin, Arthur Roullier, Adrien
Kaiser, Romain Rouffet, Valentin Deschaintre, and Tamy
Boubekeur. Controlmat: A controlled generative approach
to material capture. arXiv, 2023. 2, 4, 5, 9

[58] Giuseppe Vecchio, Renato Sortino, Simone Palazzo, and
Concetto Spampinato. Matfuse: Controllable material gen-
eration with diffusion models, 2023. 2

[59] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. T-IP, 2004. 6

[60] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable 3d
objects from images in the wild. In CVPR, 2020. 2

[61] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, 2018. 6, 11

[62] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In CVPR, 2018. 2

[63] Yu-Ying Yeh, Zhengqin Li, Yannick Hold-Geoffroy, Rui
Zhu, Zexiang Xu, Miloš Hašan, Kalyan Sunkavalli, and
Manmohan Chandraker. Photoscene: Photorealistic mate-
rial and lighting transfer for indoor scenes. In CVPR, 2022.
2

[64] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017. 2

[65] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 4, 6, 7

[66] Hao Zhou, Xiang Yu, and David W Jacobs. Glosh: Global-
local spherical harmonics for intrinsic image decomposition.
In ICCV, 2019. 2

[67] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-
gan: Dynamic memory generative adversarial networks for
text-to-image synthesis. In CVPR, 2019. 2

chat.openai.org
https://www.polyhaven.com
https://www.polyhaven.com

	. Introduction
	. Related works
	. Material Palette
	. Problem statement
	. Tileable texture extraction
	. SVBRDF estimation
	. Pipeline automation

	. Experiments
	. Experimental details
	. Texture extraction
	. SVBRDF decomposition
	. Material extraction
	. Ablations
	. 3D Scene editing.

	. Discussion

	. Experimental details
	. Tileable texture extraction
	. Decomposition training
	. Segmenters
	. Evaluation

	. TexSD – Texture generated dataset
	. Qualitative results
	. Limitations
	. Acknowledgements

