// Copyright 2020 Kentaro Hibino. All rights reserved. // Use of this source code is governed by a MIT license // that can be found in the LICENSE file. package asynq import ( "context" "encoding/json" "fmt" "sort" "sync" "testing" "time" "github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp/cmpopts" "github.com/hibiken/asynq/internal/base" "github.com/hibiken/asynq/internal/errors" "github.com/hibiken/asynq/internal/log" "github.com/hibiken/asynq/internal/rdb" h "github.com/hibiken/asynq/internal/testutil" "github.com/hibiken/asynq/internal/timeutil" ) var taskCmpOpts = []cmp.Option{ sortTaskOpt, // sort the tasks cmp.AllowUnexported(Task{}), // allow typename, payload fields to be compared cmpopts.IgnoreFields(Task{}, "opts", "w"), // ignore opts, w fields } // fakeHeartbeater receives from starting and finished channels and do nothing. func fakeHeartbeater(starting <-chan *workerInfo, finished <-chan *base.TaskMessage, done <-chan struct{}) { for { select { case <-starting: case <-finished: case <-done: return } } } // fakeSyncer receives from sync channel and do nothing. func fakeSyncer(syncCh <-chan *syncRequest, done <-chan struct{}) { for { select { case <-syncCh: case <-done: return } } } // Returns a processor instance configured for testing purpose. func newProcessorForTest(t *testing.T, r *rdb.RDB, h Handler) *processor { starting := make(chan *workerInfo) finished := make(chan *base.TaskMessage) syncCh := make(chan *syncRequest) done := make(chan struct{}) t.Cleanup(func() { close(done) }) go fakeHeartbeater(starting, finished, done) go fakeSyncer(syncCh, done) p := newProcessor(processorParams{ logger: testLogger, broker: r, baseCtxFn: context.Background, retryDelayFunc: DefaultRetryDelayFunc, isFailureFunc: defaultIsFailureFunc, syncCh: syncCh, cancelations: base.NewCancelations(), concurrency: 10, queues: defaultQueueConfig, strictPriority: false, errHandler: nil, shutdownTimeout: defaultShutdownTimeout, starting: starting, finished: finished, }) p.handler = h return p } func TestProcessorSuccessWithSingleQueue(t *testing.T) { r := setup(t) defer r.Close() rdbClient := rdb.NewRDB(r) m1 := h.NewTaskMessage("task1", nil) m2 := h.NewTaskMessage("task2", nil) m3 := h.NewTaskMessage("task3", nil) m4 := h.NewTaskMessage("task4", nil) t1 := NewTask(m1.Type, m1.Payload) t2 := NewTask(m2.Type, m2.Payload) t3 := NewTask(m3.Type, m3.Payload) t4 := NewTask(m4.Type, m4.Payload) tests := []struct { pending []*base.TaskMessage // initial default queue state incoming []*base.TaskMessage // tasks to be enqueued during run wantProcessed []*Task // tasks to be processed at the end }{ { pending: []*base.TaskMessage{m1}, incoming: []*base.TaskMessage{m2, m3, m4}, wantProcessed: []*Task{t1, t2, t3, t4}, }, { pending: []*base.TaskMessage{}, incoming: []*base.TaskMessage{m1}, wantProcessed: []*Task{t1}, }, } for _, tc := range tests { h.FlushDB(t, r) // clean up db before each test case. h.SeedPendingQueue(t, r, tc.pending, base.DefaultQueueName) // initialize default queue. // instantiate a new processor var mu sync.Mutex var processed []*Task handler := func(ctx context.Context, task *Task) error { mu.Lock() defer mu.Unlock() processed = append(processed, task) return nil } p := newProcessorForTest(t, rdbClient, HandlerFunc(handler)) p.start(&sync.WaitGroup{}) for _, msg := range tc.incoming { err := rdbClient.Enqueue(context.Background(), msg) if err != nil { p.shutdown() t.Fatal(err) } } time.Sleep(2 * time.Second) // wait for two second to allow all pending tasks to be processed. if l := r.LLen(context.Background(), base.ActiveKey(base.DefaultQueueName)).Val(); l != 0 { t.Errorf("%q has %d tasks, want 0", base.ActiveKey(base.DefaultQueueName), l) } p.shutdown() mu.Lock() if diff := cmp.Diff(tc.wantProcessed, processed, taskCmpOpts...); diff != "" { t.Errorf("mismatch found in processed tasks; (-want, +got)\n%s", diff) } mu.Unlock() } } func TestProcessorSuccessWithMultipleQueues(t *testing.T) { var ( r = setup(t) rdbClient = rdb.NewRDB(r) m1 = h.NewTaskMessage("task1", nil) m2 = h.NewTaskMessage("task2", nil) m3 = h.NewTaskMessageWithQueue("task3", nil, "high") m4 = h.NewTaskMessageWithQueue("task4", nil, "low") t1 = NewTask(m1.Type, m1.Payload) t2 = NewTask(m2.Type, m2.Payload) t3 = NewTask(m3.Type, m3.Payload) t4 = NewTask(m4.Type, m4.Payload) ) defer r.Close() tests := []struct { pending map[string][]*base.TaskMessage queues []string // list of queues to consume the tasks from wantProcessed []*Task // tasks to be processed at the end }{ { pending: map[string][]*base.TaskMessage{ "default": {m1, m2}, "high": {m3}, "low": {m4}, }, queues: []string{"default", "high", "low"}, wantProcessed: []*Task{t1, t2, t3, t4}, }, } for _, tc := range tests { // Set up test case. h.FlushDB(t, r) h.SeedAllPendingQueues(t, r, tc.pending) // Instantiate a new processor. var mu sync.Mutex var processed []*Task handler := func(ctx context.Context, task *Task) error { mu.Lock() defer mu.Unlock() processed = append(processed, task) return nil } p := newProcessorForTest(t, rdbClient, HandlerFunc(handler)) p.queueConfig = map[string]int{ "default": 2, "high": 3, "low": 1, } p.start(&sync.WaitGroup{}) // Wait for two second to allow all pending tasks to be processed. time.Sleep(2 * time.Second) // Make sure no messages are stuck in active list. for _, qname := range tc.queues { if l := r.LLen(context.Background(), base.ActiveKey(qname)).Val(); l != 0 { t.Errorf("%q has %d tasks, want 0", base.ActiveKey(qname), l) } } p.shutdown() mu.Lock() if diff := cmp.Diff(tc.wantProcessed, processed, taskCmpOpts...); diff != "" { t.Errorf("mismatch found in processed tasks; (-want, +got)\n%s", diff) } mu.Unlock() } } // https://github.com/hibiken/asynq/issues/166 func TestProcessTasksWithLargeNumberInPayload(t *testing.T) { r := setup(t) defer r.Close() rdbClient := rdb.NewRDB(r) m1 := h.NewTaskMessage("large_number", h.JSON(map[string]interface{}{"data": 111111111111111111})) t1 := NewTask(m1.Type, m1.Payload) tests := []struct { pending []*base.TaskMessage // initial default queue state wantProcessed []*Task // tasks to be processed at the end }{ { pending: []*base.TaskMessage{m1}, wantProcessed: []*Task{t1}, }, } for _, tc := range tests { h.FlushDB(t, r) // clean up db before each test case. h.SeedPendingQueue(t, r, tc.pending, base.DefaultQueueName) // initialize default queue. var mu sync.Mutex var processed []*Task handler := func(ctx context.Context, task *Task) error { mu.Lock() defer mu.Unlock() var payload map[string]int if err := json.Unmarshal(task.Payload(), &payload); err != nil { t.Errorf("coult not decode payload: %v", err) } if data, ok := payload["data"]; ok { t.Logf("data == %d", data) } else { t.Errorf("could not get data from payload") } processed = append(processed, task) return nil } p := newProcessorForTest(t, rdbClient, HandlerFunc(handler)) p.start(&sync.WaitGroup{}) time.Sleep(2 * time.Second) // wait for two second to allow all pending tasks to be processed. if l := r.LLen(context.Background(), base.ActiveKey(base.DefaultQueueName)).Val(); l != 0 { t.Errorf("%q has %d tasks, want 0", base.ActiveKey(base.DefaultQueueName), l) } p.shutdown() mu.Lock() if diff := cmp.Diff(tc.wantProcessed, processed, taskCmpOpts...); diff != "" { t.Errorf("mismatch found in processed tasks; (-want, +got)\n%s", diff) } mu.Unlock() } } func TestProcessorRetry(t *testing.T) { r := setup(t) defer r.Close() rdbClient := rdb.NewRDB(r) m1 := h.NewTaskMessage("send_email", nil) m1.Retried = m1.Retry // m1 has reached its max retry count m2 := h.NewTaskMessage("gen_thumbnail", nil) m3 := h.NewTaskMessage("reindex", nil) m4 := h.NewTaskMessage("sync", nil) errMsg := "something went wrong" wrappedSkipRetry := fmt.Errorf("%s:%w", errMsg, SkipRetry) tests := []struct { desc string // test description pending []*base.TaskMessage // initial default queue state delay time.Duration // retry delay duration handler Handler // task handler wait time.Duration // wait duration between starting and stopping processor for this test case wantErrMsg string // error message the task should record wantRetry []*base.TaskMessage // tasks in retry queue at the end wantArchived []*base.TaskMessage // tasks in archived queue at the end wantErrCount int // number of times error handler should be called }{ { desc: "Should automatically retry errored tasks", pending: []*base.TaskMessage{m1, m2, m3, m4}, delay: time.Minute, handler: HandlerFunc(func(ctx context.Context, task *Task) error { return fmt.Errorf(errMsg) }), wait: 2 * time.Second, wantErrMsg: errMsg, wantRetry: []*base.TaskMessage{m2, m3, m4}, wantArchived: []*base.TaskMessage{m1}, wantErrCount: 4, }, { desc: "Should skip retry errored tasks", pending: []*base.TaskMessage{m1, m2}, delay: time.Minute, handler: HandlerFunc(func(ctx context.Context, task *Task) error { return SkipRetry // return SkipRetry without wrapping }), wait: 2 * time.Second, wantErrMsg: SkipRetry.Error(), wantRetry: []*base.TaskMessage{}, wantArchived: []*base.TaskMessage{m1, m2}, wantErrCount: 2, // ErrorHandler should still be called with SkipRetry error }, { desc: "Should skip retry errored tasks (with error wrapping)", pending: []*base.TaskMessage{m1, m2}, delay: time.Minute, handler: HandlerFunc(func(ctx context.Context, task *Task) error { return wrappedSkipRetry }), wait: 2 * time.Second, wantErrMsg: wrappedSkipRetry.Error(), wantRetry: []*base.TaskMessage{}, wantArchived: []*base.TaskMessage{m1, m2}, wantErrCount: 2, // ErrorHandler should still be called with SkipRetry error }, } for _, tc := range tests { h.FlushDB(t, r) // clean up db before each test case. h.SeedPendingQueue(t, r, tc.pending, base.DefaultQueueName) // initialize default queue. // instantiate a new processor delayFunc := func(n int, e error, t *Task) time.Duration { return tc.delay } var ( mu sync.Mutex // guards n n int // number of times error handler is called ) errHandler := func(ctx context.Context, t *Task, err error) { mu.Lock() defer mu.Unlock() n++ } p := newProcessorForTest(t, rdbClient, tc.handler) p.errHandler = ErrorHandlerFunc(errHandler) p.retryDelayFunc = delayFunc p.start(&sync.WaitGroup{}) runTime := time.Now() // time when processor is running time.Sleep(tc.wait) // FIXME: This makes test flaky. p.shutdown() cmpOpt := h.EquateInt64Approx(int64(tc.wait.Seconds())) // allow up to a wait-second difference in zset score gotRetry := h.GetRetryEntries(t, r, base.DefaultQueueName) var wantRetry []base.Z // Note: construct wantRetry here since `LastFailedAt` and ZSCORE is relative to each test run. for _, msg := range tc.wantRetry { wantRetry = append(wantRetry, base.Z{ Message: h.TaskMessageAfterRetry(*msg, tc.wantErrMsg, runTime), Score: runTime.Add(tc.delay).Unix(), }) } if diff := cmp.Diff(wantRetry, gotRetry, h.SortZSetEntryOpt, cmpOpt); diff != "" { t.Errorf("%s: mismatch found in %q after running processor; (-want, +got)\n%s", tc.desc, base.RetryKey(base.DefaultQueueName), diff) } gotArchived := h.GetArchivedEntries(t, r, base.DefaultQueueName) var wantArchived []base.Z // Note: construct wantArchived here since `LastFailedAt` and ZSCORE is relative to each test run. for _, msg := range tc.wantArchived { wantArchived = append(wantArchived, base.Z{ Message: h.TaskMessageWithError(*msg, tc.wantErrMsg, runTime), Score: runTime.Unix(), }) } if diff := cmp.Diff(wantArchived, gotArchived, h.SortZSetEntryOpt, cmpOpt); diff != "" { t.Errorf("%s: mismatch found in %q after running processor; (-want, +got)\n%s", tc.desc, base.ArchivedKey(base.DefaultQueueName), diff) } if l := r.LLen(context.Background(), base.ActiveKey(base.DefaultQueueName)).Val(); l != 0 { t.Errorf("%s: %q has %d tasks, want 0", base.ActiveKey(base.DefaultQueueName), tc.desc, l) } if n != tc.wantErrCount { t.Errorf("error handler was called %d times, want %d", n, tc.wantErrCount) } } } func TestProcessorMarkAsComplete(t *testing.T) { r := setup(t) defer r.Close() rdbClient := rdb.NewRDB(r) msg1 := h.NewTaskMessage("one", nil) msg2 := h.NewTaskMessage("two", nil) msg3 := h.NewTaskMessageWithQueue("three", nil, "custom") msg1.Retention = 3600 msg3.Retention = 7200 handler := func(ctx context.Context, task *Task) error { return nil } tests := []struct { pending map[string][]*base.TaskMessage completed map[string][]base.Z queueCfg map[string]int wantPending map[string][]*base.TaskMessage wantCompleted func(completedAt time.Time) map[string][]base.Z }{ { pending: map[string][]*base.TaskMessage{ "default": {msg1, msg2}, "custom": {msg3}, }, completed: map[string][]base.Z{ "default": {}, "custom": {}, }, queueCfg: map[string]int{ "default": 1, "custom": 1, }, wantPending: map[string][]*base.TaskMessage{ "default": {}, "custom": {}, }, wantCompleted: func(completedAt time.Time) map[string][]base.Z { return map[string][]base.Z{ "default": {{Message: h.TaskMessageWithCompletedAt(*msg1, completedAt), Score: completedAt.Unix() + msg1.Retention}}, "custom": {{Message: h.TaskMessageWithCompletedAt(*msg3, completedAt), Score: completedAt.Unix() + msg3.Retention}}, } }, }, } for _, tc := range tests { h.FlushDB(t, r) h.SeedAllPendingQueues(t, r, tc.pending) h.SeedAllCompletedQueues(t, r, tc.completed) p := newProcessorForTest(t, rdbClient, HandlerFunc(handler)) p.queueConfig = tc.queueCfg p.start(&sync.WaitGroup{}) runTime := time.Now() // time when processor is running time.Sleep(2 * time.Second) p.shutdown() for qname, want := range tc.wantPending { gotPending := h.GetPendingMessages(t, r, qname) if diff := cmp.Diff(want, gotPending, cmpopts.EquateEmpty()); diff != "" { t.Errorf("diff found in %q pending set; want=%v, got=%v\n%s", qname, want, gotPending, diff) } } for qname, want := range tc.wantCompleted(runTime) { gotCompleted := h.GetCompletedEntries(t, r, qname) if diff := cmp.Diff(want, gotCompleted, cmpopts.EquateEmpty()); diff != "" { t.Errorf("diff found in %q completed set; want=%v, got=%v\n%s", qname, want, gotCompleted, diff) } } } } // Test a scenario where the worker server cannot communicate with redis due to a network failure // and the lease expires func TestProcessorWithExpiredLease(t *testing.T) { r := setup(t) defer r.Close() rdbClient := rdb.NewRDB(r) m1 := h.NewTaskMessage("task1", nil) tests := []struct { pending []*base.TaskMessage handler Handler wantErrCount int }{ { pending: []*base.TaskMessage{m1}, handler: HandlerFunc(func(ctx context.Context, task *Task) error { // make sure the task processing time exceeds lease duration // to test expired lease. time.Sleep(rdb.LeaseDuration + 10*time.Second) return nil }), wantErrCount: 1, // ErrorHandler should still be called with ErrLeaseExpired }, } for _, tc := range tests { h.FlushDB(t, r) h.SeedPendingQueue(t, r, tc.pending, base.DefaultQueueName) starting := make(chan *workerInfo) finished := make(chan *base.TaskMessage) syncCh := make(chan *syncRequest) done := make(chan struct{}) t.Cleanup(func() { close(done) }) // fake heartbeater which notifies lease expiration go func() { for { select { case w := <-starting: // simulate expiration by resetting to some time in the past w.lease.Reset(time.Now().Add(-5 * time.Second)) if !w.lease.NotifyExpiration() { panic("Failed to notifiy lease expiration") } case <-finished: // do nothing case <-done: return } } }() go fakeSyncer(syncCh, done) p := newProcessor(processorParams{ logger: testLogger, broker: rdbClient, baseCtxFn: context.Background, retryDelayFunc: DefaultRetryDelayFunc, isFailureFunc: defaultIsFailureFunc, syncCh: syncCh, cancelations: base.NewCancelations(), concurrency: 10, queues: defaultQueueConfig, strictPriority: false, errHandler: nil, shutdownTimeout: defaultShutdownTimeout, starting: starting, finished: finished, }) p.handler = tc.handler var ( mu sync.Mutex // guards n and errs n int // number of times error handler is called errs []error // error passed to error handler ) p.errHandler = ErrorHandlerFunc(func(ctx context.Context, t *Task, err error) { mu.Lock() defer mu.Unlock() n++ errs = append(errs, err) }) p.start(&sync.WaitGroup{}) time.Sleep(4 * time.Second) p.shutdown() if n != tc.wantErrCount { t.Errorf("Unexpected number of error count: got %d, want %d", n, tc.wantErrCount) continue } for i := 0; i < tc.wantErrCount; i++ { if !errors.Is(errs[i], ErrLeaseExpired) { t.Errorf("Unexpected error was passed to ErrorHandler: got %v want %v", errs[i], ErrLeaseExpired) } } } } func TestProcessorQueues(t *testing.T) { sortOpt := cmp.Transformer("SortStrings", func(in []string) []string { out := append([]string(nil), in...) // Copy input to avoid mutating it sort.Strings(out) return out }) tests := []struct { queueCfg map[string]int want []string }{ { queueCfg: map[string]int{ "high": 6, "default": 3, "low": 1, }, want: []string{"high", "default", "low"}, }, { queueCfg: map[string]int{ "default": 1, }, want: []string{"default"}, }, } for _, tc := range tests { // Note: rdb and handler not needed for this test. p := newProcessorForTest(t, nil, nil) p.queueConfig = tc.queueCfg got := p.queues() if diff := cmp.Diff(tc.want, got, sortOpt); diff != "" { t.Errorf("with queue config: %v\n(*processor).queues() = %v, want %v\n(-want,+got):\n%s", tc.queueCfg, got, tc.want, diff) } } } func TestProcessorWithStrictPriority(t *testing.T) { var ( r = setup(t) rdbClient = rdb.NewRDB(r) m1 = h.NewTaskMessageWithQueue("task1", nil, "critical") m2 = h.NewTaskMessageWithQueue("task2", nil, "critical") m3 = h.NewTaskMessageWithQueue("task3", nil, "critical") m4 = h.NewTaskMessageWithQueue("task4", nil, base.DefaultQueueName) m5 = h.NewTaskMessageWithQueue("task5", nil, base.DefaultQueueName) m6 = h.NewTaskMessageWithQueue("task6", nil, "low") m7 = h.NewTaskMessageWithQueue("task7", nil, "low") t1 = NewTask(m1.Type, m1.Payload) t2 = NewTask(m2.Type, m2.Payload) t3 = NewTask(m3.Type, m3.Payload) t4 = NewTask(m4.Type, m4.Payload) t5 = NewTask(m5.Type, m5.Payload) t6 = NewTask(m6.Type, m6.Payload) t7 = NewTask(m7.Type, m7.Payload) ) defer r.Close() tests := []struct { pending map[string][]*base.TaskMessage // initial queues state queues []string // list of queues to consume tasks from wait time.Duration // wait duration between starting and stopping processor for this test case wantProcessed []*Task // tasks to be processed at the end }{ { pending: map[string][]*base.TaskMessage{ base.DefaultQueueName: {m4, m5}, "critical": {m1, m2, m3}, "low": {m6, m7}, }, queues: []string{base.DefaultQueueName, "critical", "low"}, wait: time.Second, wantProcessed: []*Task{t1, t2, t3, t4, t5, t6, t7}, }, } for _, tc := range tests { h.FlushDB(t, r) // clean up db before each test case. for qname, msgs := range tc.pending { h.SeedPendingQueue(t, r, msgs, qname) } // instantiate a new processor var mu sync.Mutex var processed []*Task handler := func(ctx context.Context, task *Task) error { mu.Lock() defer mu.Unlock() processed = append(processed, task) return nil } queueCfg := map[string]int{ base.DefaultQueueName: 2, "critical": 3, "low": 1, } starting := make(chan *workerInfo) finished := make(chan *base.TaskMessage) syncCh := make(chan *syncRequest) done := make(chan struct{}) defer func() { close(done) }() go fakeHeartbeater(starting, finished, done) go fakeSyncer(syncCh, done) p := newProcessor(processorParams{ logger: testLogger, broker: rdbClient, baseCtxFn: context.Background, retryDelayFunc: DefaultRetryDelayFunc, isFailureFunc: defaultIsFailureFunc, syncCh: syncCh, cancelations: base.NewCancelations(), concurrency: 1, // Set concurrency to 1 to make sure tasks are processed one at a time. queues: queueCfg, strictPriority: true, errHandler: nil, shutdownTimeout: defaultShutdownTimeout, starting: starting, finished: finished, }) p.handler = HandlerFunc(handler) p.start(&sync.WaitGroup{}) time.Sleep(tc.wait) // Make sure no tasks are stuck in active list. for _, qname := range tc.queues { if l := r.LLen(context.Background(), base.ActiveKey(qname)).Val(); l != 0 { t.Errorf("%q has %d tasks, want 0", base.ActiveKey(qname), l) } } p.shutdown() if diff := cmp.Diff(tc.wantProcessed, processed, taskCmpOpts...); diff != "" { t.Errorf("mismatch found in processed tasks; (-want, +got)\n%s", diff) } } } func TestProcessorPerform(t *testing.T) { tests := []struct { desc string handler HandlerFunc task *Task wantErr bool }{ { desc: "handler returns nil", handler: func(ctx context.Context, t *Task) error { return nil }, task: NewTask("gen_thumbnail", h.JSON(map[string]interface{}{"src": "some/img/path"})), wantErr: false, }, { desc: "handler returns error", handler: func(ctx context.Context, t *Task) error { return fmt.Errorf("something went wrong") }, task: NewTask("gen_thumbnail", h.JSON(map[string]interface{}{"src": "some/img/path"})), wantErr: true, }, { desc: "handler panics", handler: func(ctx context.Context, t *Task) error { panic("something went terribly wrong") }, task: NewTask("gen_thumbnail", h.JSON(map[string]interface{}{"src": "some/img/path"})), wantErr: true, }, } // Note: We don't need to fully initialized the processor since we are only testing // perform method. p := newProcessorForTest(t, nil, nil) for _, tc := range tests { p.handler = tc.handler got := p.perform(context.Background(), tc.task) if !tc.wantErr && got != nil { t.Errorf("%s: perform() = %v, want nil", tc.desc, got) continue } if tc.wantErr && got == nil { t.Errorf("%s: perform() = nil, want non-nil error", tc.desc) continue } } } func TestGCD(t *testing.T) { tests := []struct { input []int want int }{ {[]int{6, 2, 12}, 2}, {[]int{3, 3, 3}, 3}, {[]int{6, 3, 1}, 1}, {[]int{1}, 1}, {[]int{1, 0, 2}, 1}, {[]int{8, 0, 4}, 4}, {[]int{9, 12, 18, 30}, 3}, } for _, tc := range tests { got := gcd(tc.input...) if got != tc.want { t.Errorf("gcd(%v) = %d, want %d", tc.input, got, tc.want) } } } func TestNormalizeQueues(t *testing.T) { tests := []struct { input map[string]int want map[string]int }{ { input: map[string]int{ "high": 100, "default": 20, "low": 5, }, want: map[string]int{ "high": 20, "default": 4, "low": 1, }, }, { input: map[string]int{ "default": 10, }, want: map[string]int{ "default": 1, }, }, { input: map[string]int{ "critical": 5, "default": 1, }, want: map[string]int{ "critical": 5, "default": 1, }, }, { input: map[string]int{ "critical": 6, "default": 3, "low": 0, }, want: map[string]int{ "critical": 2, "default": 1, "low": 0, }, }, } for _, tc := range tests { got := normalizeQueues(tc.input) if diff := cmp.Diff(tc.want, got); diff != "" { t.Errorf("normalizeQueues(%v) = %v, want %v; (-want, +got):\n%s", tc.input, got, tc.want, diff) } } } func TestProcessorComputeDeadline(t *testing.T) { now := time.Now() p := processor{ logger: log.NewLogger(nil), clock: timeutil.NewSimulatedClock(now), } tests := []struct { desc string msg *base.TaskMessage want time.Time }{ { desc: "message with only timeout specified", msg: &base.TaskMessage{ Timeout: int64((30 * time.Minute).Seconds()), }, want: now.Add(30 * time.Minute), }, { desc: "message with only deadline specified", msg: &base.TaskMessage{ Deadline: now.Add(24 * time.Hour).Unix(), }, want: now.Add(24 * time.Hour), }, { desc: "message with both timeout and deadline set (now+timeout < deadline)", msg: &base.TaskMessage{ Deadline: now.Add(24 * time.Hour).Unix(), Timeout: int64((30 * time.Minute).Seconds()), }, want: now.Add(30 * time.Minute), }, { desc: "message with both timeout and deadline set (now+timeout > deadline)", msg: &base.TaskMessage{ Deadline: now.Add(10 * time.Minute).Unix(), Timeout: int64((30 * time.Minute).Seconds()), }, want: now.Add(10 * time.Minute), }, { desc: "message with both timeout and deadline set (now+timeout == deadline)", msg: &base.TaskMessage{ Deadline: now.Add(30 * time.Minute).Unix(), Timeout: int64((30 * time.Minute).Seconds()), }, want: now.Add(30 * time.Minute), }, { desc: "message without timeout and deadline", msg: &base.TaskMessage{}, want: now.Add(defaultTimeout), }, } for _, tc := range tests { got := p.computeDeadline(tc.msg) // Compare the Unix epoch with seconds granularity if got.Unix() != tc.want.Unix() { t.Errorf("%s: got=%v, want=%v", tc.desc, got.Unix(), tc.want.Unix()) } } }