Skip to content
/ MFP Public

[CVPR 2024] MFP: Making Full Use of Probability Maps for Interactive Image Segmentation

License

Notifications You must be signed in to change notification settings

cwlee00/MFP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Jul 8, 2024
502b2f1 · Jul 8, 2024

History

12 Commits
Jul 7, 2024
Jul 7, 2024
Jul 8, 2024
Jul 7, 2024
Jul 7, 2024
Jul 7, 2024
Jul 7, 2024
Jul 8, 2024
Jul 8, 2024
Jul 7, 2024
Jul 7, 2024
Jul 7, 2024
Jul 7, 2024
Jul 7, 2024

Repository files navigation

[CVPR 2024] MFP

Chaewon Lee, Seon-Ho Lee, and Chang-Su Kim

Official code for "MFP: Making Full Use of Probability Maps for Interactive Image Segmentation"[paper]

Requirements

  • PyTorch 1.11.0
  • CUDA 11.3
  • CuDNN 8.2.0
  • python 3.8

Installation

Create conda environment:

    $ conda create -n MFP python=3.8 anaconda
    $ conda activate MFP
    $ conda install pytorch==1.11.0 torchvision==0.12.0 cudatoolkit=11.3 -c pytorch
    $ pip install -r requirements.txt

Download repository:

    $ git clone https://github.com/cwlee00/MFP.git

Download weights:

MFP model Google Drive

Evaluation

For evaluation, please download the datasets and models, and then configure the path in config.yml

python scripts/evaluate_model.py NoBRS \
--gpu=0 \
--checkpoint=./weights/mfp_models/MFP_vit_base(cocolvis).pth \
--eval-mode=cvpr \
--datasets=GrabCut,Berkeley,DAVIS,SBD

Train

For training, please download the MAE pretrained weights (click to download: ViT-Base) and configure the dowloaded path in config.yml.

python train.py models/iter_mask/plainvit_base448_cocolvis_itermask_prevMod.py \
--batch-size=8 \
--ngpus=1

Citation

Please cite the following paper if you feel this repository useful.

    @InProceedings{Lee_2024_CVPR,
    author    = {Lee, Chaewon and Lee, Seon-Ho and Kim, Chang-Su},
    title     = {MFP: Making Full Use of Probability Maps for Interactive Image Segmentation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {4051-4059}
    }

Acknowledgement

Our project is developed based on RITM and SimpleClick. We would like to show sincere thanks to the contributors.

About

[CVPR 2024] MFP: Making Full Use of Probability Maps for Interactive Image Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published