Skip to content

Self-Supervised 3D Mesh Reconstruction from Single Images (CVPR2021)

Notifications You must be signed in to change notification settings

dvlab-research/SMR

Repository files navigation

Self-Supervised Mesh Reconstruction (SMR)

This is the source code of Self-Supervised 3D Mesh Reconstruction From Single Images (CVPR-2021).

Requirements

  • Linux
  • Python >= 3.6
  • CUDA >= 10.0.130 (with nvcc installed)

Installation

Create Environment

$ conda create --name smr python=3.7
$ conda activate smr

Install from requirements.txt

You can directly install the requirements through:

$ pip install -r requirements.txt

Install packages Seperately

You can also install the required packages seperately

  • Pytorch (Please first check your cuda version)

    $ conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
  • Kaolin Library

    $ git clone --recursive https://github.com/NVIDIAGameWorks/kaolin
    $ git checkout v0.9.1
    $ python setup.py develop
  • Others: tqdm, trimesh, imageio, tensorboard.

Training and Testing

Training and Testing On the CUB-200-2011 (Bird) dataset

  • Dataset

    Download the processed data from Google Drive.

  • Run

    DATA_ROOT=/path/to/Bird/
    $ python train.py --imageSize 128 \
                        --batchSize 24 \
                        --lr 0.0001 \
                        --niter 500 \
                        --dataroot $DATA_ROOT \
                        --template_path ./template/sphere.obj \
                        --outf ./log/Bird/SMR \
                        --azi_scope 360 \
                        --elev_range '0~30' \
                        --dist_range '2~6' \
                        --lambda_gan 0.0001 \
                        --lambda_reg 1.0 \
                        --lambda_data 1.0 \
                        --lambda_ic 0.1 \
                        --lambda_lc 0.001

    or Multi-GPU

    python train.py --imageSize 256 \
                     --batchSize 24 \
                     --lr 0.0001 \
                     --niter 500 \
                     --dataroot $DATA_ROOT \
                     --template_path ./template/sphere.obj \
                     --outf ./log/Bird/SMR_256_2gpus_flip\
                     --azi_scope 360 \
                     --elev_range '0~30' \
                     --dist_range '2~6' \
                     --lambda_gan 0.0001 \
                     --lambda_reg 1.0 \
                     --lambda_data 1.0 \
                     --lambda_ic 0.1 \
                     --lambda_lc 0.001 \
                     --multigpus

Contact

Tao Hu - [email protected]

Citation

@InProceedings{Hu_2021_CVPR,
    author    = {Hu, Tao and Wang, Liwei and Xu, Xiaogang and Liu, Shu and Jia, Jiaya},
    title     = {Self-Supervised 3D Mesh Reconstruction From Single Images},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {6002-6011}
}

About

Self-Supervised 3D Mesh Reconstruction from Single Images (CVPR2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages