LOG_DIR="log" DATA_DIR="dataset/data" GENERATOR_NORM="bn" DISCRIMINATOR_NORM="bn" DISCRIMINATOR_ACTIVATION="relu" NUM_LAYERS=2 W_CHAMFER=1.0 W_CYCLE_CHAMFER=0.1 W_ADVERSARIAL=1.0 W_PERCEPTUAL=0.0 W_CONTENT_REC=0.1 W_STYLE_REC=0.1 GAN_TYPE="lsgan" DECODER_TYPE="meshflow" NUMBER_POINTS=2500 BATCH_SIZE=16 GEN_LR=0.001 DIS_LR=0.004 W_MULTISCALE_1=0.0 W_MULTISCALE_2=0.0 W_MULTISCALE_3=1.0 LR_DECAY_1=120 LR_DECAY_2=140 LR_DECAY_3=145 NEPOCH=180 python train.py \ --data_dir=$DATA_DIR \ --dir_name=$LOG_DIR \ --dataset "SMXL" \ --class_choice "horses" "hippos" \ --generator_norm "bn" \ --discriminator_norm "bn" \ --discriminator_activation=$DISCRIMINATOR_ACTIVATION \ --dis_bottleneck_size 1024 \ --batch_size=$BATCH_SIZE \ --generator_update_skips=1 \ --discriminator_update_skips=1 \ --num_layers=2 \ --num_layers_style=1 \ --nb_primitives=25 \ --template_type=SQUARE \ --weight_chamfer=$W_CHAMFER \ --weight_cycle_chamfer=$W_CYCLE_CHAMFER \ --weight_adversarial=$W_ADVERSARIAL \ --weight_perceptual=$W_PERCEPTUAL \ --weight_content_reconstruction=$W_CONTENT_REC \ --weight_style_reconstruction=$W_STYLE_REC \ --lr_decay_1=$LR_DECAY_1 \ --lr_decay_2=$LR_DECAY_2 \ --lr_decay_3=$LR_DECAY_3 \ --nepoch=$NEPOCH \ --generator_lrate=$GEN_LR \ --discriminator_lrate=$DIS_LR \ --decode_style \ --gan_type "lsgan" \ --adaptive \ --share_decoder \ --share_content_encoder \ --share_discriminator_encoder \ --share_style_mlp \ --reload_pointnet_path trained_models/pointnet_autoencoder_25_squares.pth \ --perceptual_by_layer \ --number_points=$NUMBER_POINTS \ --decoder_type=$DECODER_TYPE \ --w_multiscale_1=$W_MULTISCALE_1 \ --w_multiscale_2=$W_MULTISCALE_2 \ --w_multiscale_3=$W_MULTISCALE_3 \ --save_optimizers \ #--multiscale_loss \ #--share_style_encoder \