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Abstract— It has been long known that fusing information
from multiple sensors for robot navigation results in increased
robustness and accuracy. However, accurate calibration of the
sensor ensemble prior to deployment in the field as well as
coping with sensor outages, different measurement rates and
delays, render multi-sensor fusion a challenge. As a result,
most often, systems do not exploit all the sensor information
available in exchange for simplicity. For example, on a mission
requiring transition of the robot from indoors to outdoors, it is
the norm to ignore the Global Positioning System (GPS) signals
which become freely available once outdoors and instead,
rely only on sensor feeds (e.g., vision and laser) continuously
available throughout the mission. Naturally, this comes at
the expense of robustness and accuracy in real deployment.
This paper presents a generic framework, dubbed Multi-
Sensor-Fusion Extended Kalman Filter (MSF-EKF), able to
process delayed, relative and absolute measurements from a
theoretically unlimited number of different sensors and sensor
types, while allowing self-calibration of the sensor-suite online.
The modularity of MSF-EKF allows seamless handling of
additional/lost sensor signals during operation while employing
a state buffering scheme augmented with Iterated EKF (IEKF)
updates to allow for efficient re-linearization of the prediction
to get near optimal linearization points for both absolute and
relative state updates. We demonstrate our approach in outdoor
navigation experiments using a Micro Aerial Vehicle (MAV)
equipped with a GPS receiver as well as visual, inertial, and
pressure sensors.

I. INTRODUCTION

Precise and consistent localization is a core problem in
many areas of mobile robotics, in both research and industrial
applications. Driven by the need for effective solutions, the
literature is currently host to an abundance of approaches
to state estimation. Addressing different choices of on-board
sensor suites the employed frameworks however are tailored
tightly to the task at hand. The use of GPS feeds, for exam-
ple, is a common and convenient approach to localization
for platforms operating in open (GPS-accessible) spaces.
Conversely, in GPS-denied environments, vision or laser
based approaches are often employed instead. The transi-
tion, however, across domains with different sensor-signal
availability and suitability, remains a challenging problem.

In this paper, we present an effective approach to tackle
the problem of seamless sensor-feed integration within state
estimation. We put the focus on rotor-based Micro Aerial
Vehicles (MAVs), as they are most capable of acting in and
traversing across different domains, while imposing delicate
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Fig. 1: The scale error of a visual SLAM system combined with our sensor-
fusion framework commonly is in the area of 3-5% depending on the
structure observed and the movements carried out. The left plot shows the
deviations of the trajectory with the scale error not accounted for. The right
plot shows potential benefits which additional sensors can provide when
fusing e.g., a height sensor with visual and inertial cues.

challenges due to their high agility and limitations on both
payload and computational power. Building on our earlier
work [16], [17], we propose a highly generic, open source
c++ state estimation framework which comprises:
• Modular support for an unlimited number of sensors

providing relative and absolute measurements.
• Estimation of calibration states between sensors and

dynamic compensation of measurement delays.
• Re-linearization of constraints from both proprioceptive

and exteroceptive information sources in filter form.
• Efficient tracking of cross covariance terms for relative

updates allowing estimation rates of several kHz.
Following an analysis of the limitations of our earlier

work, we also present a derivation to include relative poses
from key-frame based Simultaneous Localization And Map-
ping (SLAM) system, which is essential when employing
visual/laser odometric sensors. Finally, we demonstrate the
MSF-EKF framework in real experiments, flying trajectories
of more than 800 m with speeds of up to 4 m/s.1

A. Sensor Fusion for State Estimation

Autonomous MAV navigation and control has seen great
success over the last couple of years, demonstrating impres-
sive results with the aid of external motion capture systems.
However, the complex preparation of the operation space
required with such systems is clearly not an option in large
scale missions in unknown environments. Tackling this chal-
lenge is core in enabling operation for common tasks such as
industrial inspection, search-and-rescue and surveillance. As
a result, a series of approaches have been proposed, using

1A video of the experiments is available at http://youtu.be/neG8iEf8XiQ



on-board sensors such as laser-range finders [13], visible-
light [1] or depth cameras, typically fused with readings from
an Inertial Measurement Unit (IMU) to provide information
about the state of the vehicle.

Most often, these state estimation approaches are designed
to use a specific sensor setup for the domain space of the task
at hand. While showing unmatched accuracy and consistency
[5], [9] they are commonly designed for a particular sensor
setup with limited modularity. Despite that GPS signals
become available once the robot moves outdoors, they are
often ignored in the state estimation [1], [17] as they require
a more complex control strategy when moving from a local
to global frame of reference. As a result, many current
frameworks used on board MAVs fail to utilize all available
information, limiting both accuracy and robustness of the
state estimate. In [8] handling sensor outages was addressed
in the context of fixed-wing aerial navigation with one posi-
tion sensor, demonstrating successful state estimation during
simulated temporary outage of GPS signal. In [11] GPS and
visual measurements where used for different periods of the
experiment. Here, we present a generic framework, which
permits handling online with the effects of a multitude of
different sensors. Fusing multiple sensors was also addressed
recently in [6] where both relative and absolute sensors
are included in a factor graph formulation using non-linear
optimization. Such (fixed-lag) smoothers based on non-linear
optimization have potentially higher accuracy due to the
ability to re-linearize all constraints from both exteroceptive
and proprioceptive information sources. However even for
recent implementations [6] the computational cost is higher
by two orders of magnitude compared to the framework
presented here.

B. Self-Calibration of Sensors and Scale estimation

In navigation frameworks, any vehicle states essential for
robot control are commonly estimated at high rates, which
is especially critical for platforms like MAVs. In a typical
scenario, inertial measurements arriving at rates of several
100 Hz to 2 kHz are fused with lower rate exteroceptive
updates (∼5 − 90 Hz), coming from e.g., GPS or visual
odometery, to mitigate drifts. Common fusion approaches
are based on indirect formulations of Extended (EKF) [13],
or Unscented (UKF) Kalman Filters [14]. In [10], it was
shown that additional quantities of interest can be estimated
in the same manner; for example, the intrinsic calibration of
the proprioceptive sensors, the extrinsic calibration between
proprio- and exteroceptive sensors, as well as unknown
quantities from the exteroceptive-sensor process such as the
scale and drifts of a monocular SLAM system. For the study
of inter-sensor calibration we refer to our earlier work [17].

The accuracy of monocular visual-inertial frameworks is
dominated by the correct estimation of the scale. In Fig. 1
we show the first 350 m of an 800 m flight of a MAV flying
with speeds of up to 4 m/s in circles over grass. To highlight
the error in scale we plotted estimate and ground-truth in the
x and y directions versus the traveled distance. The left plot
highlights the error in the scale estimation of about 5 % while

the right plot shows the same data when the scale error is
minimized. This demonstrates the potential benefits of fusing
additional sources of metric information which then leads to
more accurate estimates also in long range missions.

Here, we adopt this idea to achieve online self-calibration
of the sensor-suite. Furthermore we adapt our framework to
handle relative measurements to avoid the shortcomings of
our previous work: In [16], the local map is considered as
noise free which leads to an inconsistent state estimate.

C. Relative and absolute pose measurements

In [16], we discussed the un-observability of states such
as the relative position and yaw between the SLAM-frame
and the world-frame in a visual-inertial navigation system.
This problem is commonly addressed by fixing the respective
states in the estimation process and applying pose estimates
from the visual SLAM algorithms as pseudo-absolute mea-
surements [3], [14], [15].

However, it has been shown [11] that applying the relative
pose estimates from a visual odometery system as pseudo-
absolute measurements leads to sub-optimal estimates, as
the uncertainty of the pose computed by a visual odometry
system (or key frame based SLAM with a limited number of
key frames) is a relative and not an absolute quantity. This
leads to inconsistencies and does not allow the estimator
to correct for drifts in the visual SLAM system. Here, we
circumvent this problem by adopting Stochastic Cloning
[12] which allows us to include relative measurements in
a relative context only, which also means, that we no longer
incorporate local estimates of the scale factor (typically
effected by drift and jumps) to the global position estimation.
This contrasts with our previous work where the latest scale
estimate was applied to the global pose update, which means
that a small local drift in scale would falsely result to large
changes in global position estimates.

II. COMBINING MULTIPLE SENSORS

Our framework is based on the indirect formulation of an
iterated EKF where the state prediction is driven by IMU
measurements. The state consists of number of core states:

xTcore =
[
piw

T
, viw

T
, qiw

T
, bTω , b

T
a

]
. (1)

Namely, these correspond to the relative position piw, velocity
viw, and attitude2 qiw of the IMU w.r.t. the world frame
expressed in the world frame. Furthermore we estimate IMU
acceleration and gyroscope biases ba and bω , respectively.
Additional sensors can then be added modularly with respect
to the IMU frame.

We use the insight from the observability analysis carried
out in [16] for the implementation of our framework in
order to design a sensor suite for a particular platform and
mission. For example, if we were to use a (differential) GPS
receiver in addition to the IMU, we would need to add the
translation between these two sensors as extrinsic calibration

2Relative rotation is parameterized as a Quaternion of rotation in Hamil-
ton notation.



state. Similarly, a pressure sensor introduces a translational
calibration state and an additional bias state in the global
z axis. A more complex example is a monocular visual
odometery module yielding a six-degrees of freedom (DoF)
pose, measured w.r.t. a separate frame of reference which
drifts in all six dimensions. As with the pressure sensor, we
account for these drifts by adding a six-DoF state describing
the drift between the world frame and the frame the sensor
measurements are expressed in. Furthermore, we need to add
a six-DoF extrinsic calibration state with respect to the IMU.
A camera could as well measure optical flow representing
a 3D body velocity sensor [17]. Since these are no global
position measurements, we do not need to add drift states,
but only a six-DoF extrinsic calibration state with respect to
the IMU frame.

III. EXAMPLE: VISUAL-INERTIAL-PRESSURE

As an example of a multi-sensor suite we derive the EKF
update formulation of a common setup in MAV navigation
consisting of an IMU, a pressure sensor and a monocular
camera (whose feeds are processed in a visual SLAM
providing relative 6-DoF pose estimates) – forming a loosly
coupled visual-inertial-pressure navigation system. Starting
from (1) we define the 15-element error state vector for
core states as

x̃Tcore =
[
∆piw

T
,∆viw

T
, δΘi

w

T
,∆bw

T ,∆ba
T
]
, (2)

with x̃ representing the difference of an estimate x̂ to its true
value x, which is defined as δq = q ⊗ q̂ ≈ [1 1

2δΘ
T ]T for

quaternions.
Additional to these core states, every sensor adds a number

of auxiliary states which relate the measured quantities to the
core states. Therefore the full EKF state is assembled from
the core states x̃core and a series of additional states x̃si
which are defined by the sensor type:

x̃T = {x̃Tcore, x̃Ts1 , x̃
T
s2 , ..., x̃

T
sn}. (3)

Below, we derive the EKF equations for the visual-inertial-
pressure suite.

1) Pressure sensor: In order to obtain height estimates
from a pressure sensor we need to account for the bias bpress
resulting from the changes in ambient pressure:

x̃press = [∆bpress] . (4)

For the pressure measurement zpress, the following mea-
surement model applies:

zpress = ppress − bpress + npress (5)

with npress denoting the measurement noise modeled as
zero-mean, white and Gaussian and ppress denoting the
measured altitude. We define the error in the z-position
generally as z̃ = z − ẑ. Which can be linearized to z̃ =
Hpressx̃ + η, where Hpress denotes the Jacobian of the
pressure measurement w.r.t. the (16-dimensional) error state.

2) Monocular visual SLAM sensor: The quantities to be
estimated, are the scale λ and the drifts in position pwv and
attitude qwv of the visual SLAM system w.r.t. the world-
frame as well as the camera-to-IMU rotation qci . We do not
estimate the camera-to-IMU translational offset pci online, as
it is unlikely to change significantly during the mission. The
states added by this sensor are:

x̃Tvis =
[
∆λ, δΘc

i
T ,∆pvw

T , δΘv
w
T
]
. (6)

For the camera pose measurement zvis, the following
measurement model applies [16]:

zvis =

[
pcv
qcv

]
=

[
C(qvw)(p

i
w + CT

(qiw)p
c
i )λ+ pvw + npv

qci ⊗ qiw ⊗ qvw−1 ⊗ δqnqv,

]
;

(7)
with C(qiw) as the rotation matrix corresponding to the IMU’s
attitude and C(qvw), pvw the rotation and translation of the
world frame to the vision frame expressed in the world
frame, respectively. The visual measurement is corrupted by
noise npv and nqv which we model as zero-mean, white and
Gaussian.

We define the position and attitude error of the vision
measurement as [

z̃p
z̃q

]
=

 CT
(qwv )(p

i
w + CT

(qiw)p
c
i )λ+ pwv −

(CT
(q̂wv )(p̂

i
w + CT

(q̂iw)p
c
i )λ̂+ p̂wv )

qci ⊗ qiw ⊗ qwv ⊗ (q̂ci ⊗ q̂iw ⊗ q̂wv )−1

 (8)

which can be linearized to z̃ = Hvisx̃+η, where Hvis holds
the Jacobian of the (visual-) pose measurement w.r.t. the error
state.

Hv =



CT
(q̂wv )λ̂

03×3
−CT

(q̂wv )C
T
(q̂iw)

⌊
p̂ci
⌋
λ̂

03×3
03×3

CT
(q̂wv )C

T
(q̂iw)p̂

c
i + CT

(q̂wv )p̂+ p̂wv
03×3
I3×3λ̂

CT
(q̂wv )C

T
(q̂iw)λ̂

0

03x3

03x3

CT
(q̂ci )

03x3

03x3

0
I3×3
03x3

CT
(q̂ic)

CT
(q̂iw)

0
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IV. GENERIC AND MODULAR IMPLEMENTATION

A. Processing delayed measurements

The proprioceptive sensor readings are used to predict the
state at IMU rate in real time, which is crucial for for MAV
attitude control. This estimate is updated with other sensor
readings (e.g. from SLAM) which are available only at lower
rates and arrive with significant (and potentially unknown)
time delay. In our previous work [17], we proposed to use a
ring buffer for the states so that we could apply state updates



in the past. After applying an update to the corresponding
state in the past we re-predict the state to the current time
to keep the best state prediction available for control at high
rate, see Fig. 2.

t t t
pred. state

meas.

updated state pred. of updated state
a) b) c)

curr. statecurr. state meas. curr. state

Fig. 2: The ring-buffer scheme we proposed in [17] to compensate for
delayed measurements. a) The current state is used for control. The
covariance is not required for control and therefore only predicted on
demand. b) A delayed measurement arrives upon which the corresponding
state is queried in the buffer. The covariance prediction is carried out to the
state and both quantities are corrected by the measurement. c) The updated
state is predicted to the current time to provide the most recent estimate
for control. The covariance is predicted to the state where we anticipate the
next measurement to arrive.

B. Process multiple delayed measurements

In order to integrate multiple sensor readings, we extend
our previous approach in [17]: we maintain a potentially
infinitely long buffer for states and measurements, inside
which the elements are sorted by time. Whenever new IMU
readings become available, a new state-object is instantiated,
the state is predicted using the proprioceptive measurements
and then inserted into the state buffer, illustrated at the
bottom row in Fig. 3.

As in Section III, we consider the typical MAV sensor-
setup of an IMU, a pressure sensor and a monocular visual-
SLAM system. Fusing the metric pressure sensor readings
on IMU feeds ensures faster scale convergence and more
accurate state estimates, as discussed in Section VI.

t t t

a) b) c)

Meas.

State

Fig. 3: a) Shows how pressure measurements (zp) are applied to the
closest state in the buffer. Interpolation allows us to use the best available
linearization point. In b), delayed vision measurements (zv) are applied by
querying the closest state in the buffer, and any subsequent measurements
are re-applied to the updated state. Finally, in c), sensors with different
rates can be directly integrated to the framework. The covariance is only
predicted on-demand (bold-dash arrows), while the state is always predicted
to the current time for control after all pending measurements have been
applied (point-dash arrows).

Commonly, the pressure sensor has (constant) measure-
ment rates in the order of 50 Hz, while the visual-SLAM
system usually operates at a (varying) rate between 30 and
90 Hz. In the upper row in Fig. 3 a) we illustrate how the
pressure measurements arrive and are applied to the state
closest to their respective measurement time. In cases where
no state is available at the measurement time, we interpolate
the respective proprioceptive measurements to get the best
available linearization point (See Fig. 3 a.).

Fig. 3 b) illustrates the case where the delayed measure-
ment of the visual-SLAM system becomes available. As

before, the closest state (in the past) is retrieved from the
state-buffer, which is updated using the information from the
visual-SLAM system. Subsequently, the measurement buffer
is queried recursively for later measurements, between which
both the state and covariance are predicted accordingly.

After applying the last measurement in the measurement-
buffer, all subsequent states in the state-buffer are predicted
so that the most recent estimate is available for vehicle
control (See Fig. 3 c).

C. Delayed state initialization

In multi sensor fusion, it is typical that some sensor
feeds might be missed for some time or become unavailable
during the mission. For example, indoors the MAV can nav-
igate using the on-board visual and inertial sensors (global
position and yaw unobservable) but with the transition to
outdoors, GPS measurements become available (rendering
global position and yaw observable). The framework allows
sending (re-)initialization “measurements” at any time which
get integrated to the estimation process seemlessly.

D. Relinearization of the prediction and IEKF window up-
dates

Keeping past states and covariances in the buffer also
allows us to employ an IEKF scheme over a window of
measurements. When our a-priori state estimate is far from
the a-posteriori state estimate, we hold the update back
to first employ a set of IEKF iterations over a window
of measurements and refine the linearization points before
applying the update using the refined linearization point.
Given the little computational cost for state and covariance
prediction we can thus relinearize the prediction multiple
times in order to reduce linearization errors for highly non-
linear systems. This extends naturally to applying a set of
updates as batch non-linear least squares optimization.

E. Outlier rejection

The framework allows the modular addition of outlier
rejection methods to each measurement module. The filter
core module then performs then e.g., a Mahalanobis test
before applying the update to the state.

F. Compile time calculation of all indices and matrix dimen-
sions

In our implementation we separate the state in core and
auxiliary parts (which were added e.g., as bias and calibration
terms for a particular sensor) already at the state level (see
(3)). This allows us to perform optimizations by exploiting
this knowledge in the prediction steps of the EKF. The
code related to the core states can therefore be completely
separated from the sensor specific implementations, render-
ing our MSF-EKF implementation very easy to extend. The
definition of the current sensor suite is done at one place,
and then used to unfold the full state and compute the
dimensionality of the full state all at compile time. This
allows transparent sensor integration and highly efficient
matrix operations. The design of a new filter setup therefore



consists only in the implementation of the measurement
Jacobian and residual for the sensor. Additional states can
be added with a single line from which the framework
computes all indices and derives the necessary calculations
at compile time. This state definition also specifies the local
parameterizations for Quaternion error state Jacobian and
update functions so that the filter can apply the correct
parameterization automatically. Since our implementation
includes a large set of sensor implementations, in most cases
only the specification of the desired sensor setup is necessary.

Knowing the sensor suite and the respective state at
compile time, we make extensive use of template meta-
programming techniques to let the compiler compute all
required matrix dimensions and all indices required in the
EKF computation. This allows us to exploit the full efficiency
of the linear algebra framework Eigen3 we employ.

V. PROCESSING RELATIVE MEASUREMENTS

Formulating the visual update as in Section III has draw-
backs when using measurements from a visual odometery
framework: The latest estimate of the visual scale is used to
scale the whole visual odometery path, not taking into ac-
count intermediate changes in scale. In addition to that visual
odometery systems (i.e. performing SLAM with a limited
number of key-frames to bound computational complexity),
provide a pose measurement which denotes a relative mea-
surement between time-instants k and k + m rendering the
measured quantities dependent on the state values xk and
xk+m, as well as the previous measurement. Nevertheless
many recent publications ([14], [17], [15]) compute visual
updates from a local map with fixed landmarks and apply
them as absolute pose measurements leading to inconsistent
estimates, prohibiting fusion with absolute measurements
like GPS.

By the Markov assumption, in an EKF all information
about past states is contained in the latest state estimate and
both the state x̃k|k and the corresponding covariance P̃k|k are
available. The standard EKF formulation, however, does not
allow for direct consideration of the correlations between the
states at different time steps and therefore, applying a relative
measurement is not straightforward.

Similar to the Stochastic Cloning approach of [12], we
adapt the EKF update equations to handle absolute measure-
ments as in [17] and then to handle the relative measure-
ments, relating two states. The measurement equation for
the relative update is:

z̃k = Hk+mx̃k+m|k +Hkx̃k|k + η, (9)

where the subscript k +m|k denotes the predicted quantities
at time tk+m and k|k corresponds to the posterior at time-
step tk. Moreover, x̃ is state vector and H the corresponding
measurement Jacobian.

3http://eigen.tuxfamily.org

A. Updating the state with a relative measurement

In order to account for relative measurements, the au-
thors of [12] propose to add a clone of the state for
each sensor providing relative measurements as well as the
respective errors for the landmarks used to compute the
relative measurements. Since we want to use the sensors in
a loosely-coupled manner abstracting the internal algorithms
(e.g. SLAM) we don’t include the measurement errors for
landmarks relating both states in our state vector. To keep
the computational complexity low and because in general
not all measurements in a multi-sensor setup denote relative
quantities we do not in general clone every state but rather
make use of our framework design, according to which, we
can access the pair X̌ of past states we want to relate by a
given relative measurement, at any time:

X̌ =
[
x̃Tk|k x̃

T
k+m|k

]T
. (10)

We then build the full covariance matrix of this state pair
X̌:

P̌k+m|k =

[
Pk|k Pk|kFT

k+m,k

Fk+m,kPk|k Pk+m|k

]
(11)

with Fk+m,k =
m∏
i=1

Fk+i corresponding to the concate-

nation of the linearized system dynamic matrix. We store
the state transition matrix Fk (given the respective best
available linearization point) in the buffer and only carry
out the product accumulation and multiplication with Pk|k
when we want to apply a relative measurement. Thereby all
additional measurements arriving within the time spanned
by the relative measurements are considered and improve
the respective linearization points for Fk. The residual rk+m

and the covariance of a relative measurement Šk+m are given
by:

rk+m = zk,k+m − ẑk,k+m ' ȞX̌,

Šk+m = ȞP̌k+m|kȞ
T +Rr,

(12)

where Rr is the covariance of the relative pose coming from
the employed SLAM framework and Ȟ =

[
Hk|k Hk+m|k

]
comprises the two corresponding measurement Jacobians.
The Kalman gain calculation then is straightforward:

Ǩ = P̌k+m|kȞ
T Š−1k+m =

[
KT

k KT
k+m

]T
. (13)

The final step is the correction of the state and the
covariance at time step tk+m given the residual rk+m:

x̂k+m|k+m = x̂k+m|k +Kk+mrk+m,

Pk+m|k+m = Pk+m|k −Kk+mŠk+mK
T
k+m.

(14)

Given the better estimate of x̂k+m|k+m we can now re-
apply all measurements that arrived after the relative mea-
surements and re-predict the state using the new linearization
points. Since we perform relinearization of the prediction,



Fig. 4: Part a) on the left shows a straight forward implementation of
stochastic cloning using the relative transformations between tracker poses
as relative measurements. Pose drift is inevitable because noisy estimates
get integrated. This degrades the main benefit of key-frame based SLAM:
The absence of temporal drift. Moreover the covariance of this measurement
is not available, prohibiting it’s fusion with other sensors. b) The relative
measurement is expressed w.r.t. a fixed key frame of the map at any time,
making it possible to derive a transformation for which we can also get a
correct covariance estimate. This estimate is drift free and incorporates the
relative covariance correctly.

multiple relative measurements are always applied using the
best available linearization point.

The main question left is the derivation of the measure-
ment covariance for the relative update.

B. Pose estimation covariance in key-frame based visual
SLAM systems

Instead of deriving the uncertainty in the camera pose
from the prediction of the pose and the visible landmarks
as in EKF SLAM, the covariance of the camera-pose is
obtained from bundle adjustment. This non-linear optimiza-
tion technique solves simultaneously for both 3D-map points
in the world and the camera locations over time. This is
done by minimizing the weighted-least-squares re-projection
errors of the 3D map points across all images, which then
provides an estimate of the pose covariance [4]. Since
the solution of the bundle adjustment problem is costly,
the real-time pose estimate (pose tracking) is commonly
calculated from an approximation where the map-points are
kept fix and the current camera pose is recovered solving the
perspective n-point (PnP) [2] problem. The loosely coupled
SLAM systems employed in related work [14], [17] therefore
provide a covariance of the current pose T k

Map w.r.t. the
local fixed map which is not the quantity we would need
to apply relative measurements. If one would apply these
local transformations T k+1

k as relative updates, one would
lose of the main benefits of key-frame based SLAM system,
namely the absence of temporal drift as shown in Fig. 4 a).

C. Stochastic cloning for key-frame based visual SLAM
systems

The covariance calculated w.r.t. the fixed map actually de-
notes the uncertainty of the current pose T k

Map w.r.t. the fixed
key-frame KF fixed

n in the bundle adjustment problem (fixed
as to fix gauge freedom) as shown in Fig. 4 b). Therefore
to correctly integrate the relative-measurements, we need to
apply stochastic-cloning to the EKF-state corresponding to
the time the current fixed key-frame became fixed. Since
for long term missions we have to drop old key frames to
keep computational demands low, which key-frame is fixed
in the bundle-adjustment problem is changing over time. This
means that the current pose needs to be computed relative
to a changing reference in the map as shown in Fig. 4 b).

The uncertainty of the fixed key-frame w.r.t. the world
frame is changing whenever the fixed key-frame changes.
At this moment the uncertainty of the past fixed key-frame
w.r.t. the world frame is augmented with the uncertain
transformation of the new fixed key-frame which is obtained
from bundle-adjustment.

The pose measurement is therefore computed via the
uncertain transformation chain from the world frame to the
fixed key-frame TKF fixed

World and from there to the current cam-
era pose estimate T k

Map. This allows us to take advantage of
the non temporal drifting estimate of key-frame based SLAM
but at the same time correctly account for the uncertainties
in the pose estimate which then allows fusion with additional
exteroceptive sensors.

VI. EXPERIMENTS

In this section we present a series of experiments which
we carried out by flying ∼350 m with an Asctec Firefly MAV
equipped with a Intel Core2Duo computer 4. All computation
is done on-board and the flights are purely vision based
on grass with speeds of up to 4 m/s. Ground truth for
all experiments is provided by a sub-mm precision Leica
TotalStation 15i which continuously tracks the MAV.

A. Covariance of pose estimate for sensor fusion

As discussed earlier, most visual SLAM systems based
on key-frames (e.g. PTAM [7]) provide a pose estimate and
respective covariance w.r.t. a local map following bundle
adjustment. The covariance of such visual pose estimates
is most often over-confident since the uncertainty in the
pose is estimated assuming a fixed map for computational
efficiency (in contrast to EKF SLAM where a full covariance
matrix of the pose and the map is jointly estimated). When
fusing this visual estimate as an absolute measurement the
covariance of the global position does not increase with the
distance traveled as shown in Fig. 5 (The oscillations show
how applying local PnP based estimates as global position
measurements multiplied with the current scale estimate
leads to wrong covariance estimates). If we would like to
fuse this over-confident visual pose estimate with a relatively
uncertain GPS pose (roughly spanning an area of 1m2), the
corrections from GPS would only have minor influence on
the state estimate, and as a result, global position drifts of
visual SLAM cannot be corrected for.

If the visual SLAM measurements are applied as relative
measurements, however, the global pose covariance (given
only visual updates) grows over time (Fig. 6), as expected to
reflect the true uncertainty of the global position. This allows
consistent fusion with global measurements like GPS.

B. Online sensor switching

While the improvement of the estimated state is one
benefit of including additional sensors, the capability of
seamless switching between the elements of the sensor-
suite online adds both additional fail-safety and versatility.

4The actual experiment was 800 m but ground truth is only available for
a sub-part.
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Fig. 5: When applying the covariance of the visual pose as an absolute
measurement the covariance of the global x and y positions is decreasing
with time despite no global information being available. This prohibits
optimal fusion with absolute measurements as provided by e.g., GPS.
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Fig. 6: When applying the covariance of the visual pose as a relative
measurement the covariance of the global x and y position is growing as
expected.
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Fig. 7: This plot shows the absolute errors in x and y axes over traveled
distance of the proposed framework when switching vision and GPS sensors
on and off several times. During the GPS covered parts of the mission, the
vehicle passed a cluster of trees several times, which introduced large drift
in GPS position. The plot shows that the framework is able to correct for
this drift once the measurements from an additional sensor become available
again.

One common case is the change from local vision-based
navigation (indoor) to GPS-based global position estimates
(outdoor). Current experimental results for MAV navigation
are primarily bound by battery life and therefore rather
small in scale of operation (usually trajectories of around
1 km). While drifts in position and visual-scale become
important at this trajectory length, the local estimate provided
by vision systems is still superior to GPS. To demonstrate the
capability of online-sensor switching, we added alternating
drop-outs of both GPS and vision measurements. Some
dropouts of the visual update take place when the MAV was
passing a group of trees, where the GPS is highly corrupted
by multi-pass and high dilution of precision. In this area, the
state estimate then follows the corrupted GPS measurements
adding errors as large as 5 m (Fig. 7).

C. Processing time

While the main motivation for the heavy use of template
meta-programming was to keep the framework generic and
transparent to the employed sensor-suite, there are also sig-

nificant improvements in terms of computational efficiency5

as detailed in the table below. The state corresponds to
a visual-inertial fusion filter estimating both rotation and
translation of the extrinsic IMU to camera calibration.

Cost of function call (EKF: 31 states) mean std dev
IMU handling and state prediction 44 µs 23 µs
Covariance prediction 31 µs 24 µs
Get state for delayed measurement 79 µs 53 µs
Apply measurement 65 µs 37 µs
Re-predict state after measurement 21 µs 22 µs
Additional fixed overhead 11 µs 9 µs

VII. CONCLUSIONS

In this paper, we present our MSF-EKF framework for
multi-sensor fusion able to handle delayed absolute and rela-
tive measurements seamlessly. We discuss how a sensor-suite
can be designed according to the requirements of the mission
and which combinations of sensors render particular parts of
the state observable. The results from this discussion lead to
the derivation of our implementation, where we highlight our
generic and modular multi-sensor fusion framework. We then
show how our framework can be employed to add robustness
and fail-safety to long term missions, where not all sensors
might be available at any time. In the near future, we plan to
open-source our MSF-EKF framework for other researchers
to employ it on their platforms, while future research will
focus on the implementation and evaluation of the key-frame
based stochastic cloning for multiple relative sensors.
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