Skip to content

[CVPR-2024] Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation

Notifications You must be signed in to change notification settings

heshuting555/DsHmp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Jul 24, 2024
d0c3a39 Β· Jul 24, 2024

History

4 Commits
Jul 20, 2024
Jul 20, 2024
Jul 20, 2024
Jul 20, 2024
Jul 24, 2024
Jul 20, 2024
Jul 20, 2024
Jul 20, 2024
Jul 20, 2024

Repository files navigation

Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation

PyTorch Python PWC

πŸ“„[arXiv]   πŸ“„[PDF]

This repository contains code for CVPR2024 paper:

Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation
Shuting He, Henghui Ding
CVPR 2024

Installation:

Please see INSTALL.md. Then

pip install -r requirements.txt
python3 -m spacy download en_core_web_sm

Inference

1. Valu set

Obtain the output masks of Valu set:

python train_net_dshmp.py \
    --config-file configs/dshmp_swin_tiny.yaml \
    --num-gpus 8 --dist-url auto --eval-only \
    MODEL.WEIGHTS [path_to_weights] \
    OUTPUT_DIR [output_dir]

Obtain the J&F results on Valu set:

python tools/eval_mevis.py

2. Val set

Obtain the output masks of Val set for CodaLab online evaluation:

python train_net_dshmp.py \
    --config-file configs/dshmp_swin_tiny.yaml \
    --num-gpus 8 --dist-url auto --eval-only \
    MODEL.WEIGHTS [path_to_weights] \
    OUTPUT_DIR [output_dir] DATASETS.TEST '("mevis_test",)'

Training

Firstly, download the backbone weights (model_final_86143f.pkl) and convert it using the script:

wget https://dl.fbaipublicfiles.com/maskformer/mask2former/coco/instance/maskformer2_swin_tiny_bs16_50ep/model_final_86143f.pkl
python tools/process_ckpt.py
python tools/get_refer_id.py

Then start training:

python train_net_dshmp.py \
    --config-file configs/dshmp_swin_tiny.yaml \
    --num-gpus 8 --dist-url auto \
    MODEL.WEIGHTS [path_to_weights] \
    OUTPUT_DIR [path_to_weights]

Note: We train on a 3090 machine using 8 cards with 1 sample on each card, taking about 17 hours.

Models

☁️ Google Drive

Acknowledgement

This project is based on MeViS. Many thanks to the authors for their great works!

BibTeX

Please consider to cite DsHmp if it helps your research.

@inproceedings{DsHmp,
  title={Decoupling static and hierarchical motion perception for referring video segmentation},
  author={He, Shuting and Ding, Henghui},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13332--13341},
  year={2024}
}

About

[CVPR-2024] Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages