vl

|

Felix Voigtlander Gitta Kutyniok Morten Nielsen

y 4

: informatiques g”mathématiques

Approximation with deep networks

Rémi Gribonval - Inria Rennes - Bretagne Atlantique

remi.gribonval@inria.fr

preprint: https://arxiv.org/abs/1905.01208


mailto:remi.gribonval@inria.fr

Agenda

B Generalities on feedforward neural networks
B Why sparsely connected networks ?

B Approximation spaces

B Benefits of depth

R. GRIBONVAL

Congres SMAI, Guidel, 13 mai 2019



Feedforward neural networks
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Feedforward neural networks
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Feedforward neural networks

B Feedforward network

B vector input Tr & Rd
B parameters
L (“linear”) layers Wg

B [-1 (hidden) nonlinear layers

y € R”

B description 0 = (Wg)é’zl

B vector

M realization f@ . RY — R

fo=WroooWr_io--

‘ e;“ \I‘& <’l» /.\\ 0\ ‘g 4} :b//.\\ \“v 4

0 0
KB X ‘ 'l 559 »'; ’5‘
‘-:0'0)"/ WAV ~ ::“:A vv‘w \,Q«v,

K , \ 0‘»(uv
g,;«m-.',gw '/,«,,, RO

VO \) A N A’)' %
,03\‘\\ U8 1) > ,,Zf: <tt\ g w‘\x PO —
\o r» ' :'n\:{\\' /o,w Qi"

"A A\\

’\\\!/"‘\!///'

(OIOA ,o;
o< ‘

B other ingredients: max-pooling, skip connections, conv ... NOT IN THIS TALK
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Example: ReLU networks

W Definition 0(7) = ReLU({) = max(t,0) =7,

M popular in practice for computational reasons

M Properties:

B any realization of a ReLU-network is continuous and piecewise (affine) linear

B d=1: any piecewise linear function is a realization of a ReLU-network with L=2 (one hidden layer)

m d>1: no longer true (with L=2 layer the realization is not compactly supported)
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Studying the expressivity of DNNs

B DNN training = function fitting
B e.g. regression

folx) =~ E(Z|X =)
B typically stochastic gradient descent: NOT THIS TALK

M Best achievable approximation ?

M Role of “architecture” ?
B activation function(s)
B depth
B number of neurons, of connections ...



Universal approximation property

B A celebrated result
B L=2 (one hidden layer) is enough to approximate any
continuous function arbitrarily well on any compact

subset of R, with any “sigmoid-like” activation
m Hornik, Stinchcombe, White 1989; Cybenko 1989

B Tradeoffs ?
B One hidden layer is enough ... with large enough #neurons

B Approximation rates wrt #neurons for “smooth” function

m Barron, DeVore, Mhaskar, and many more since the 1990s
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Why sparsely connected networks ?

M Definition: sparsity of network with parameters W

|8]lo = # connections <= n

B Reasonable proxy to estimate
B Flops
HBits & bytes

B Sample complexity, e.g. VC dimension
m Ssee e.g. Bartlett et al 2017
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B Example: fast linear transforms !
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Same sparsity - various network shapes

B Deep & narrow

L=n layers
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Same sparsity - various network shapes

M Deep & narrow

m .. fully connected ! L=n layers
/—/—
o—0—10—-"0 .. O—C

A » 2
M Shallow & wide n/2 neurons

m .. fully connected ! \O//
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Same sparsity - various network shapes

M Deep & narrow

m .. fully connected ! L=n layers
/—/—
o—0O0O—"10—710 .. O—C

M ... and many more sparsely connected possibilities

A » 2
M Shallow & wide n/2 neurons

m .. fully connected ! \O/
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Approximation with sparse networks

M Approximation error: given QO c R? and f € L”(Q)

E,(f) = int | f = follp

B subject to sparse connection constraint [|6llo <n»
B + other constraints (depth L(n), choice of g, ...)

B Tradeoffs error / #connections

0.7 “‘\‘\

-_

n

example: FAuUST (learned fast transforms) vs SVD
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Direct vs inverse estimate

f is “smooth” (belongs to _
En.(f) Sn™"

Sobolev / Besov / modulation
space, is “cartoon-like”; ...)
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Direct vs inverse estimate

f is “smooth” (belongs to _
En(f)Sn

Sobolev / Besov / modulation
space, is “cartoon-like”; ...)

B Optimal rate for these function classes:
®  known (nonlinear width)
B achieved by deep networks :-)
B same as wavelets, curvelets

m cf e.g. work of Philip Grohs
and co-workers
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Direct vs inverse estimate
f is “smooth” (belongs to
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B Optimal rate for these function classes:
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Notion of approximation space

B Definition: approximation class
A = {f e LP(Q): En(f) = O(n"")}

B +variants with finer measures of decay

B class depends on network “architecture”

B presence of skip-connections
® choice of activation function(s) O ...
B fixed or varying depth

B [arger class = more expressive architecture
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

Q

B limitation: cannot implement
skip-connections, ResNets,
U-nets ?

d
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

Q Qorid

B limitation: cannot implement
skip-connections, ResNets, o
U-nets ?

B Theorem 1: under some assumptions the class A°
equipped With [|f|.a« := [[ /]l +supn®En(f) is

B a complete normed vector space;
m jdentical for strict & generalized networks

B assumptions are satisfied by the ReLU and its powers, ReLU" ,r > 1
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

IO USSESLS (IIBC) unchanged expressiveness
— —
D,
U with /- without skip-connections (WiP)

B Theorem 1: under some assumptions the class A°
equipped with || f||a~ = ||fll» +supnO‘E (f) is

B a complete normed vector space; — Yy
m jdentical for strict & generalized networks

B assumptions are satisfied by the ReLU and its powers, ReLU" ,r > 1
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Role of activation function 0

M (Very) degenerate cases exist
B Case of affine activation function :

m A% = space of all affine transforms

B Case of polynomial activation, with bounded depth:

= A (sub)space of polynomials
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Role of activation function 0

M (Very) degenerate cases exist
B Case of affine activation function :

m A% = space of all affine transforms

B Case of polynomial activation, with bounded depth:

= A (sub)space of polynomials

B There is a (pathological) analytic activation such

that with L=3 (two hidden layers) and n = 3d*(6d + 3)
connections, for any f € Lp([O 1]4),0 < p < oo

m Maiorov & Pinkus 99
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Role of activation function 0

M (Very) degenerate cases exist
B Case of affine activation function :

m A% =space of all affine transforms

B Case of polynomial activation, with bounded depth:

= A (sub)space of polynomials

B There is a (pathological) analytic activation such

that with L=3 (two hidden layers) and n = 3d*(6d + 3)
connections, for any f € Lp([O 1]4),0 < p < oo

m Maiorov & Pinkus 99 a __ TP d
B in other words, approximation space is trivial A% =1L ([Ov 1] )
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Piecewise polynomial activation
B Theorem 2

®  Under mild assumptions on domain and depth growth L(n)

= |f O is continuous and piecewise polynomial of degree at most r, then A“ (Q) C A (ReLUr)

=  Moreover, the expressivity of ReLU powers saturates at r=2

A*(ReLU) C A%(ReLU?) = A*(ReLU") C LP, Vr > 2
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Piecewise polynomial activation
B Theorem 2

®  Under mild assumptions on domain and depth growth L(n)

= |f O is continuous and piecewise polynomial of degree at most r, then A® (Q) C A (ReLUr)

=  Moreover, the expressivity of ReLU powers saturates at r=2
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— e

\B PY a a4 '[ a I~ a 4 ‘/

J - ) @XDlrIore ol A °) ] A g = | 1 ‘A O :
WHIIGOCIED GV CAMNIVIGC Gl G H YUHUUGILGUW L IZNG IaWw 111G CVWOLIKS .

. N N’ -
| ) / ! N B

VE AN = FR AV er ° PATN (VZ Na ‘ﬂ'/ 2D'do)(o]e D OVYACIIEQrY \

w\ Y AaAlu< W Wil e \/w J y < AP AN 4 AO4A¢ g < SITIAUICIICY
N O O O /.

R. GRIBONVAL

Congres SMAI, Guidel, 13 mai 2019



Agenda

B Generalities on feedforward neural networks
B Why sparsely connected networks ?

B Approximation spaces

B Benefits of depth

R. GRIBONVAL

Congres SMAI, Guidel, 13 mai 2019



Benefits of depth ?

B ReLU-networks in dimension d=1
B Can implement any piecewise affine function

\x//\ 5 ///:
m  For L=2 (one hidden layer), #breakpoints = #neurons
m  Forlarge L #breakpoints can be exponential in #neurons

B Recent work on the benefits of depth
B Given #neurons, some functions implemented by deep
networks are badly approximated by shallow ones

m see e.g. Mhaskar & Poggio 2016, Telgarsky 2016
B typical example: “triangular waves” / sawtooth function




“Shallow” ReLU-nets have limited
expressivity

B Theorem 3:

®  Compactly supported smooth functions approximated at best at rate 2L
if > 2L then C2(R%) N A%(ReLU, L) = {0}

u Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth
functions using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

M Corollary:

® Consider a function space B such that C2(R%) N B # {0}

examples: Sobolev or Besov space, of arbitrary positive smoothness

if BC A%(ReLU, L)then L > /2
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Role of depth

B Theorem 4

M Direct estimate for Besov spaces B Inverse estimate for Besov spaces (d=1)
ad o) T
B~ C A%(ReLU", L) A%(ReLU", L) C Bo/LL/2]
[ | for a certain range of rates u cannot be improved, for any d
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Role of depth

B Theorem 4

M Direct estimate for Besov spaces B Inverse estimate for Besov spaces (d=1)
ad A“ (R T 7,/2
B elLU", L) o r L) a/|L/2]
C ) A ReLU ] L C B
[ | for a certain range of rates u cannot be improved, for any d

B Proof sketch

M Direct result
®  Characterize Besov with wavelets
®  |mplement n-term wavelet expansion

with O(n)-sparsely connected network
of depth L=3
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Role of depth

B Theorem 4

M Direct estimate for Besov spaces

B* ¢ A*(ReLU", L)

for a certain range of rates

B Proof sketch

M Direct result

Characterize Besov with wavelets
Implement n-term wavelet expansion

with O(n)-sparsely connected network
of depth L=3
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M Inverse estimate for Besov spaces (d=1)

A%(RelLU", L) Cc B/ LE/2

u cannot be improved, for any d

M Inverse result

B Lemma: if|8]o <n then fo is
piecewise poly with O(nl/2}) pieces

m  Apply Petrushev’s inverse estimate
for free-knot splines




Role of depth

B Theorem 4

M Direct estimate for Besov spaces B Inverse estimate for Besov spaces (d=1)
ad Aa (R r I,/2
B elLU", L) o r L) a/|L/2]
C 9 A RelLU ] L C B
[ ] for a certain range of rates « u cannot be improved, for any d
B Proof sketch
B Direct result M Inverse result
m Characterize Besov with wavelets B Lemma: if|fllo <n then fo is

piecewise poly with O(nl/2}) pieces
®  |mplement n-term wavelet expansion

with O(n)-sparsely connected network m  Apply Petrushev’s inverse estimate
of depth L=3 for free-knot splines
aeeper iNIN s €Xpresses rougner tunccions
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Summary: Approximation with DNNs

B Role of architecture

=  Strict vs generalized networks: same expressiveness
= Challenge: expressiveness of plain vs skip connections / ResNets?

= main / only difference = ease of training with stochastic gradient ?

M Role of nonlinearity

= ReLU(?) = max(t,0) = t_ras expressive as any piecewise affine activation
= ReLU” as expressive as any continuous piecewise polynomial activation
= Expressiveness of Rel.U" “saturates” at r=2

= Challenge: training of ReLU?-networks ? vanishing gradients ?

M Role of depth

=  Deep enough, any dimension: DNN strictly more expressive than wavelets

M Last: counting neurons vs counting weights:

m can similarly define family of approximation spaces with same properties

2
?eights(g) C Ageurons(g) C Av?e/ights(g)



Overall summary & perspectives

M First step: expressivity of different architectures

B .. spaces yet to be better characterized
B convolutional architectures, ResNets, U-nets, max-pooling ?

preprint: https://arxiv.org/abs/1905.01208

B Next steps ?

B .. constructive approximation/training algorithms ?
m .. guidelines for choosing a DNN architecture ?
m .. statistical guarantees ?
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