

Gitta Kutyniok

Morten Nielsen

Approximation with deep networks

Rémi Gribonval - Inria Rennes - Bretagne Atlantique remi.gribonval@inria.fr

preprint: https://arxiv.org/abs/1905.01208

Agenda

- Generalities on feedforward neural networks
- Why sparsely connected networks ?
- Approximation spaces
- Benefits of depth

Feedforward neural networks

■ Feedforward network

- vector input
- $x \in \mathbb{R}^d$
- parameters
 - Laffine ("linear") layers

 W_{ℓ}

- L-1 (hidden) nonlinear layers
- vector output $y \in \mathbb{R}^k$

Feedforward neural networks

Feedforward network

- vector input $x \in \mathbb{R}^d$

- parameters
 - L affine ("linear") layers

 W_{ℓ}

- L-1 (hidden) nonlinear layers
- vector output $y \in \mathbb{R}^k$
- description $\theta = (W_\ell)_{\ell=1}^L$
- realization $f_{ heta}: \mathbb{R}^d
 ightarrow \mathbb{R}^k$

$$f_{\theta} = W_L \circ \varrho \circ W_{L-1} \circ \cdots \circ \varrho \circ W_1$$

Feedforward neural networks

■ Feedforward network

- vector input
- $x \in \mathbb{R}^d$
- parameters
 - Laffine ("linear") layers

 W_{ℓ}

- L-1 (hidden) nonlinear layers
- vector output $y \in \mathbb{R}^k$
- description $\theta = (W_\ell)_{\ell=1}^L$
- realization $f_{ heta}: \mathbb{R}^d
 ightarrow \mathbb{R}^k$

$$f_{\theta} = W_L \circ \varrho \circ W_{L-1} \circ \cdots \circ \varrho \circ W_1$$

other ingredients: max-pooling, skip connections, conv ... NOT IN THIS TALK

Example: ReLU networks

Definition
$$\varrho(t) = \text{ReLU}(t) = \max(t, 0) = t_+$$

popular in practice for computational reasons

Properties:

any realization of a ReLU-network is continuous and piecewise (affine) linear

- **d=1:** any piecewise linear function is a realization of a ReLU-network with L=2 (one hidden layer)
- d>1: no longer true (with L=2 layer the realization is not compactly supported)

Studying the expressivity of DNNs

- DNN training = function fitting
 - e.g. regression

$$f_{\hat{\theta}}(x) \approx \mathbb{E}(Z|X=x)$$

- typically stochastic gradient descent: NOT THIS TALK
- Best achievable approximation ?
- Role of "architecture" ?
 - activation function(s)
 - depth
 - number of neurons, of connections ...

Universal approximation property

A celebrated result

- L=2 (one hidden layer) is enough to approximate any continuous function arbitrarily well on any compact subset of \mathbb{R}^d , with any "sigmoid-like" activation
 - Hornik, Stinchcombe, White 1989; Cybenko 1989

Tradeoffs ?

- One hidden layer is enough ... with large enough #neurons
- Approximation rates wrt #neurons for "smooth" function
 - Barron, DeVore, Mhaskar, and many more since the 1990s

Agenda

- Generalities on feedforward neural networks
- Why sparsely connected networks ?
- Approximation spaces
- Benefits of depth

Why sparsely connected networks?

- lacksquare **Definition**: sparsity of network with parameters heta
 - $\|\theta\|_0 = \# \text{ connections } <= n$

- Reasonable proxy to estimate
 - Flops
 - ■Bits & bytes
 - Sample complexity, e.g. VC dimension
 - see e.g. Bartlett et al 2017
- **Example:** fast linear transforms

Same sparsity - various network shapes

Deep & narrow

■ Shallow & wide

n/2 neurons

Same sparsity - various network shapes

Shallow & wide
... fully connected!

n/2 neurons

Same sparsity - various network shapes

... and many more sparsely connected possibilities

Approximation with sparse networks

Approximation error: given $\Omega \subset \mathbb{R}^d$ and $f \in L^p(\Omega)$

$$E_n(f) = \inf_{\theta} \|f - f_{\theta}\|_p$$

- subject to sparse connection constraint $\|\theta\|_0 \le n$
- lacksquare + other constraints (**depth** L(n), choice of ϱ , ...)

Tradeoffs error / #connections

example: FAuST (learned fast transforms) vs SVD

Direct vs inverse estimate

f is "smooth" (belongs to Sobolev / Besov / modulation space, is "cartoon-like", ...) Direct estimates

$$E_n(f) \lesssim n^{-\alpha}$$

Direct vs inverse estimate

f is "smooth" (belongs to Sobolev / Besov / modulation space, is "cartoon-like", ...) Direct estimates

$$E_n(f) \lesssim n^{-\alpha}$$

- Optimal rate for these function classes:
 - known (nonlinear width)
 - achieved by deep networks :-)
 - same as wavelets, curvelets
 - cf e.g. work of Philip Grohs
 and co-workers

Direct vs inverse estimate

f is "smooth" (belongs to Sobolev / Besov / modulation space, is "cartoon-like", ...) Direct estimates

Inverse estimates?

$$E_n(f) \lesssim n^{-\alpha}$$

- Optimal rate for these function classes:
 - known (nonlinear width)
 - achieved by deep networks :-)
 - same as wavelets, curvelets
 - cf e.g. work of Philip Grohs
 and co-workers

- What can we say about *f* ?
- \blacksquare Role of activation O?
- Role of depth ?

Agenda

- Generalities on feedforward neural networks
- Why sparsely connected networks ?
- Approximation spaces
 - Role of skip connections
 - Role of activation function
- Benefits of depth

Notion of approximation space

Definition: approximation class

$$A^{\alpha} := \{ f \in L^{p}(\Omega) : E_{n}(f) = O(n^{-\alpha}) \}$$

- +variants with finer measures of decay
- class depends on network "architecture"
 - presence of skip-connections
 - choice of activation function(s) Q ...
 - fixed or varying depth
- larger class = more expressive architecture

- Strict networks
 - **same** activation at all neurons

 ϱ

limitation: cannot implement skip-connections, ResNets, U-nets?

Generalized networks

two possible activations at each neuron

arrho or ${ t id}$

- Strict networks
 - **same** activation at all neurons

 ϱ

limitation: cannot implement skip-connections, ResNets, U-nets?

- Generalized networks
 - **two** possible activations at each neuron

 ϱ or id

Theorem 1: under some assumptions the class A^{α} equipped with $||f||_{A^{\alpha}} := ||f||_p + \sup n^{\alpha} E_n(f)$ is

weight layer

- \blacksquare a complete normed vector space;
- identical for strict & generalized networks
- assumptions are satisfied by the ReLU and its powers, $\mathtt{ReLU}^r, r \geq 1$

- Strict networks
 - **same** activation at all neurons

 ϱ

limitation: cannot implement skip-connections, ResNets, U-nets?

- Generalized networks
 - two possible activations at each neuron

arrho or ${ t id}$

o DenotedA

Theorem 1: under some assumptions the class A^{α} equipped with $||f||_{A^{\alpha}} := ||f||_p + \sup n^{\alpha} E_p(f)$ is

weight layer

- a complete normed vector space;
- identical for strict & generalized networks
- assumptions are satisfied by the ReLU and its powers, $\mathrm{ReLU}^r, r \geq 1$

- Strict networks
 - **same** activation at all neurons
- Generalized networks
 - **two** possible activations at each neuron

 ϱ

 ρ or id

Suggests (TBC) unchanged expressiveness with / without skip-connections (WIP)

- Theorem 1: under some assumptions the class A^{α} equipped with $||f||_{A^{\alpha}} := ||f||_p + \sup n^{\alpha} E_p(f)$ is
 - a complete normed vector space;
- $\longrightarrow \mathbf{Denoted} A^{\alpha}(\varrho)$
 - identical for strict & generalized networks
 - assumptions are satisfied by the ReLU and its powers, $\mathrm{ReLU}^r, r \geq 1$

Role of activation function ϱ

- (Very) degenerate cases exist
 - Case of affine activation function:
 - \blacksquare A^{α} = space of all affine transforms
 - Case of polynomial activation, with bounded depth:
 - $\blacksquare A^{\alpha}$ = (sub)space of polynomials

Role of activation function ϱ

- (Very) degenerate cases exist
 - Case of affine activation function:
 - \blacksquare A^{α} = space of all affine transforms
 - Case of polynomial activation, with bounded depth:
 - \blacksquare A^{α} = (sub)space of polynomials
 - There is a (pathological) analytic activation such that with L=3 (two hidden layers) and $n=3d^2(6d+3)$ connections, for any $f\in L^p([0,1]^d), 0< p<\infty$ $E_n(f)=0$

Maiorov & Pinkus 99

Role of activation function ϱ

- (Very) degenerate cases exist
 - Case of affine activation function:
 - \blacksquare A^{α} = space of all affine transforms
 - Case of polynomial activation, with bounded depth:
 - $\blacksquare A^{\alpha}$ = (sub)space of polynomials
 - There is a (pathological) analytic activation such that with L=3 (two hidden layers) and $n=3d^2(6d+3)$ connections, for any $f\in L^p([0,1]^d), 0< p<\infty$

$$E_n(f) = 0$$

- Maiorov & Pinkus 99
- in other words, approximation space is trivial

$$A^{\alpha} = L^p([0,1]^d)$$

Piecewise polynomial activation

Theorem 2

- Under mild assumptions on domain and depth growth L(n)
 - If arrho is continuous and *piecewise polynomial* of degree at most \emph{r} , then $A^{lpha}(arrho) \subset A^{lpha}(\mathrm{ReLU}^r)$
 - Moreover, the expressivity of ReLU powers saturates at r=2

$$A^{\alpha}(\mathrm{ReLU}) \subsetneq A^{\alpha}(\mathrm{ReLU}^2) = A^{\alpha}(\mathrm{ReLU}^r) \subsetneq L^p, \quad \forall r \geq 2$$

Piecewise polynomial activation

Theorem 2

- Under mild assumptions on domain and depth growth L(n)
 - If arrho is continuous and piecewise polynomial of degree at most r, then $A^{lpha}(arrho)\subset A^{lpha}({ t ReLU}^r)$
 - Moreover, the expressivity of ReLU powers saturates at r=2

$$A^{\alpha}(\operatorname{ReLU}) \subsetneq A^{\alpha}(\operatorname{ReLU}^2) = A^{\alpha}(\operatorname{ReLU}^r) \subsetneq L^p, \quad \forall r \geq 2$$

Suggests to explore training squared-ReLU networks? Maybe harder to train (vanishing / exploding gradients)

Agenda

- Generalities on feedforward neural networks
- Why sparsely connected networks ?
- Approximation spaces
- Benefits of depth

Benefits of depth?

ReLU-networks in dimension d=1

Can implement any piecewise affine function

- For L=2 (one hidden layer), #breakpoints = #neurons
- For large L

#breakpoints can be exponential in #neurons

Recent work on the benefits of depth

- Given #neurons, some functions implemented by deep networks are badly approximated by shallow ones
 - see e.g. Mhaskar & Poggio 2016, Telgarsky 2016
 - typical example: "triangular waves" / sawtooth function

"Shallow" ReLU-nets have limited expressivity

■ Theorem 3:

Compactly supported smooth functions approximated at best at rate 2L

if
$$\alpha > 2L$$
 then $C_c^3(\mathbb{R}^d) \cap A^\alpha(\mathrm{ReLU},L) = \{0\}$

Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

Corollary:

Consider a function space B such that $C_c^3(\mathbb{R}^d) \cap B \neq \{0\}$ examples: Sobolev or Besov space, of arbitrary positive smoothness

if
$$B\subset A^{\alpha}(\mathrm{ReLU},L)$$
 then $L>lpha/2$

"Shallow" ReLU-nets have limited expressivity

■ Theorem 3:

Compactly supported smooth functions approximated at best at rate 2L

if
$$\alpha > 2L$$
 then $C_c^3(\mathbb{R}^d) \cap A^\alpha(\mathrm{ReLU},L) = \{0\}$

Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

Corollary:

Consider a function space B such that $C_c^3(\mathbb{R}^d) \cap B \neq \{0\}$ examples: Sobolev or Besov space, of arbitrary positive smoothness

if
$$B\subset A^{\alpha}(\mathrm{ReLU},L)$$
 then $L>lpha/2$

With ReLU: "If architecture is expressive then it is deep"

Theorem 4

■ Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\operatorname{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

■ Inverse estimate for Besov spaces (d=1)

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

 \blacksquare cannot be improved, for any d

Theorem 4

Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

■ Inverse estimate for Besov spaces (d=1)

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

 \blacksquare cannot be improved, for any d

Theorem 4

Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

Inverse estimate for Besov spaces (d=1)

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

cannot be improved, for any d

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

- Inverse result
 - **Lemma:** if $\|\theta\|_0 \le n$ then f_θ is piecewise poly with $O(n^{\lfloor L/2 \rfloor})$ pieces
 - Apply Petrushev's inverse estimate for free-knot splines

Theorem 4

Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

■ Inverse estimate for Besov spaces (d=1)

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

a cannot be improved, for any *d*

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

- Inverse result
 - Lemma: if $\|\theta\|_0 \le n$ then f_θ is piecewise poly with $O(n^{\lfloor L/2 \rfloor})$ pieces
 - Apply Petrushev's inverse estimate for free-knot splines

deeper DNN

expresses rougher functions

Summary & perspectives

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- ⇒ main / only difference = **ease of training** with stochastic gradient?

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- ⇒ main / only difference = **ease of training** with stochastic gradient?

Role of nonlinearity

- lacktriangledown $\mathrm{ReLU}(t) = \max(t,0) = t_+$ as expressive as any piecewise affine activation
- ReLU² as expressive as any continuous piecewise polynomial activation
- **Expressiveness of ReLU** r "saturates" at r=2
- → Challenge: training of ReLU²-networks? vanishing gradients?

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- ⇒ main / only difference = **ease of training** with stochastic gradient?

Role of nonlinearity

- lacktriangledown $\mathrm{ReLU}(t) = \max(t,0) = t_+$ as expressive as any piecewise affine activation
- ReLU² as expressive as any continuous piecewise polynomial activation
- Expressiveness of ReLU^r "saturates" at r=2
- → Challenge: training of ReLU²-networks? vanishing gradients?

Role of depth

Deep enough, any dimension: DNN strictly more expressive than wavelets

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- ⇒ main / only difference = **ease of training** with stochastic gradient?

Role of nonlinearity

- ReLU $(t) = \max(t, 0) = t_+$ as expressive as any piecewise affine activation
- ReLU² as expressive as any continuous piecewise polynomial activation
- Expressiveness of ReLU^r "saturates" at r=2
- → Challenge: training of ReLU²-networks? vanishing gradients?

Role of depth

Deep enough, any dimension: DNN strictly more expressive than wavelets

Last: counting neurons vs counting weights:

can similarly define family of approximation spaces with same properties

$$A^{\alpha}_{\mathtt{weights}}(\varrho) \subset A^{\alpha}_{\mathtt{neurons}}(\varrho) \subset A^{\alpha/2}_{\mathtt{weights}}(\varrho)$$

Overall summary & perspectives

First step: expressivity of different architectures

- ... spaces yet to be better characterized
- convolutional architectures, ResNets, U-nets, max-pooling?

```
preprint: https://arxiv.org/abs/1905.01208
see also
[Daubechies, DeVore, Foucart, Hanin, Petrova 2019]
```

Next steps ?

- ... constructive approximation/training algorithms?
- **u** ... **guidelines** for choosing a DNN architecture?
- **...** statistical guarantees?