[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

LS-SVM based solutions to differential equations

Siamak Mehrkanoon

k: siamak.mehrkanoon@maastrichtuniversity.nl

mhttps://sites.google.com/view/siamak-mehrkanoon/homepage

Maastricht University, DKE

SMAI 2019, France

Outline

[Overview](#page-2-0)

- [Learning solution of PDEs](#page-8-0)
- [Learning solution of DAEs](#page-33-0)
- [Parameter estimation](#page-49-0)
- **[Conclusion](#page-60-0)**

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

Problem Statements:

3 / 59

Dynamical Systems

- Arise frequently in numerous applications including \bullet mathematical modeling and control theory.
- Numerical methods must be applied.

Existing numerical approaches

- Provide discrete solutions (Runge Kutta, Explicit-Implicit schemes, FDM among others).
- Require a discretization of the domain via meshing (higher dimension can potentially be a problem)
- Depend on index reduction techniques for lowering the index of a DAE system.
- Neural networks based approaches suffer from local minima solutions.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

0000000000

- Closed form solution
- Optimal representation of the solution
- Potentially can be used for high dimensional PDEs \bullet
- Does not require index reduction technique (high index DAEs) \bullet

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

O RKHS

- Gaussian process (probabilistic setting)
- LSSVM (optimization setting)

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

The primal LS-SVM: $\rm [^1]$

minimize
\n_{*w,b,e*}
$$
\frac{1}{2}w^T w + \frac{\gamma}{2}e^T e
$$

\nsubject to
\n $y_i = w^T \varphi(x_i) + b + e_i, \quad i = 1, ..., n$

The dual LS-SVM:

$$
\left[\begin{array}{c|c}\Omega + I_n/\gamma & \mathbf{1}_n \\
\hline\n\mathbf{1}_n^T & \mathbf{0}\n\end{array}\right] \left[\begin{array}{c} \alpha \\ \hline\n\end{array}\right] = \left[\begin{array}{c} \mathbf{y} \\ \hline\n\end{array}\right]
$$

where $\Omega_{ij} = \mathcal{K}(\mathsf{x}_i, \mathsf{x}_j) = \varphi(\mathsf{x}_i)^{\mathsf{T}} \varphi(\mathsf{x}_j).$

¹ J. A. K. Suykens et al. Least Squares Support Vector Machines. World Scientific, Singapore, 2002.

- Fixed Size LSSVM [see²]
- Fixed Size semi-supervised KSC based model [see³]

² J. A. K. Suykens et al. Least Squares Support Vector Machines. World Scientific, Singapore, 2002.

³Siamak Mehrkanoon and Johan AK Suykens. "Large scale semi-supervised learning using KSC based model". In: IEEE International Joint Conference on Neural Networks (IJCNN). 2014.

[Forward Problem: PDEs](#page-8-0)

Aim

We propose a kernel based method in the LS-SVM framework [4]. The formulation is derived using the primal-dual setting.

- In primal: the solution is in terms of the feature map.
- **•** In dual: Kernel based representation of the solution.

⁴Siamak Mehrkanoon and Johan AK Suykens. "Learning solutions to partial differential equations using LS-SVM". . In: Neurocomputing 159 (2015), pp. 105–116.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

0000000000

[Forward Problem: PDEs](#page-8-0)

One dimensional PDEs

We consider the PDF of the form:

$$
\begin{cases}\n\mathscr{L}u(\mathbf{x}) = f(\mathbf{x}), & \mathbf{x} \in \Sigma \in \mathbb{R}^2, \\
\mathscr{B}u(\mathbf{x}) = g(\mathbf{x}), & \mathbf{x} \in \partial \Sigma\n\end{cases}
$$
\n(1)

- $\bullet \Sigma$ is a bounded domain. which can be either rectangular or irregular,
- \bullet ∂Σ represents its boundary.
- \bullet B and $\mathscr L$ are differential operators.

Our goal is to find \hat{u} that satisfies [\(1\)](#page-9-0) on the given domain Σ:

$$
\begin{array}{ll}\text{minimize} & \|\mathcal{L}\hat{u} - f\|\\\text{subject to} & \mathcal{B}\hat{u} = g\end{array}
$$

(2)

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Forward Problem: PDEs](#page-8-0)

Formulation of the method

Collocation method: discretization of the domain Σ into a set of collocation points defined as follows:

$$
\mathcal{X} = \left\{ \mathbf{x}^k \mid \mathbf{x}^k = (x_k, t_k), \ k = 1, \ldots, k_{end} \right\},\
$$

where $\mathcal{X} = \mathcal{X}_{\varnothing} \cup \mathcal{X}_{\varnothing}$.

Formulation of the method

One can rewrite (1) as the following optimization problem:

minimize
$$
\frac{1}{2} \sum_{i=1}^{\lfloor X_{\mathscr{D}} \rfloor} \left[(\mathscr{L}[\hat{u}] - f)(\mathbf{x}_{\mathscr{D}}^{i}) \right]^2
$$

\nsubject to $\mathscr{B}[\hat{u}(\mathbf{x}_{\mathscr{B}}^{j})] = g(\mathbf{x}_{\mathscr{B}}^{j}), \quad j = 1, ..., |X_{\mathscr{B}}|.$ (3)

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Forward Problem: PDEs](#page-8-0)

Consider the case where L is defined as follows:

$$
\mathscr{L}\equiv\frac{\partial^2 u}{\partial t^2}+a(x,t)\frac{\partial u}{\partial t}+b(x,t)u-c(x,t)\frac{\partial^2 u}{\partial x^2}.
$$

subject to a Dirichlet boundary condition, i.e.

$$
u(\mathbf{x}) = g(\mathbf{x}) \text{ for all } \mathbf{x} \in \partial \Sigma.
$$

The approach can be summarized as follows:

Steps needed

Assume that a general approximate solution is of the following form:

$$
\hat{u}(\mathbf{x}) = w^T \varphi(\mathbf{x}) + d \tag{4}
$$

where $\varphi(\cdot)$: $\mathbb{R}^{\text{dim}} \to \mathbb{R}^{\text{h}}$ is the feature map.

[Forward Problem: PDEs](#page-8-0)

● Solve the optimization problem:

minimize
\n
$$
\mathbf{w}, d, \mathbf{e}
$$
\n
$$
\mathbf{w}^T \left[\boldsymbol{\varphi}_H(\mathbf{x}_{\mathscr{D}}^i) + a(\mathbf{x}_{\mathscr{D}}^i) \boldsymbol{\varphi}_I(\mathbf{x}_{\mathscr{D}}^i) + b(\mathbf{x}_{\mathscr{D}}^i) \boldsymbol{\varphi}(\mathbf{x}_{\mathscr{D}}^i) -
$$
\nsubject to
\n
$$
\mathbf{w}^T \left[\boldsymbol{\varphi}_H(\mathbf{x}_{\mathscr{D}}^i) + a(\mathbf{x}_{\mathscr{D}}^i) \boldsymbol{\varphi}_I(\mathbf{x}_{\mathscr{D}}^i) + b(\mathbf{x}_{\mathscr{D}}^i) \boldsymbol{\varphi}(\mathbf{x}_{\mathscr{D}}^i) -
$$
\n
$$
c(\mathbf{x}_{\mathscr{D}}^i) \boldsymbol{\varphi}_{XX}(\mathbf{x}_{\mathscr{D}}^i) \right] + b(\mathbf{x}_{\mathscr{D}}^i) d = f(\mathbf{x}_{\mathscr{D}}^i) + e_i, i = 1, ..., |\mathcal{X}_{\mathscr{D}}|,
$$
\n
$$
\mathbf{w}^T \boldsymbol{\varphi}(\mathbf{x}_{\mathscr{D}}^i) + d = g(t_i), i = 1, ..., |\mathcal{X}_{\mathscr{D}}|.
$$

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

(5)

[Forward Problem: PDEs](#page-8-0)

Linear system [⁵]

$$
\left[\begin{array}{c|c}\nK + \gamma^{-1}I_N & S_{\mathscr{B}} & \mathbf{b} \\
\hline\nS_{\mathscr{B}}^T & \Delta_{\mathscr{B}} & \mathbf{1}_M \\
\hline\n\mathbf{b}^T & \mathbf{1}_M^T & 0\n\end{array}\right]\n\left[\begin{array}{c} \alpha \\
\hline\n\beta \\
\hline\n\end{array}\right] = \n\left[\begin{array}{c} f \\
\hline\n\mathbf{g} \\
\hline\n0\n\end{array}\right]
$$

⁵Siamak Mehrkanoon and Johan AK Suykens. "Learning solutions to partial differential equations using LS-SVM". . In: Neurocomputing 159 (2015), pp. 105–116.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Forward Problem: PDEs](#page-8-0)

O The optimal representation in dual:

$$
\hat{u}(\mathbf{x}) = \sum_{i=1}^{|\mathcal{X}_{\mathcal{D}}|} \alpha_i \left(\left[\nabla_{t_1^{(2)},0} K \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) + a(\mathbf{x}_{\mathcal{D}}^i) \left[\nabla_{t_1,0} K \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) + \\ b(\mathbf{x}_{\mathcal{D}}^i) \left[\nabla_{0,0} K \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) - c(\mathbf{x}_{\mathcal{D}}^i) \left[\nabla_{\mathbf{x}_1^{(2)},0} K \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) \right) \\ + \sum_{i=1}^{|\mathcal{X}_{\mathcal{D}}|} \beta_i \left[\nabla_{0,0} K \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) + d.
$$

where $[\nabla_{0,0}K](t,s)=\varphi(t)^\mathsf{T}\varphi(s)$ and $[\nabla_{t,0}K](t,s)=\frac{\partial(\varphi(t)^\mathsf{T}\varphi(s))}{\partial t}$ are the kernel function and its derivative respectively.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Forward Problem: PDEs](#page-8-0)

Rectangular domains

Consider the case where φ is defined as follows:

$$
\mathscr{L}\equiv\frac{\partial^2 u}{\partial t^2}+a(x,t)\frac{\partial u}{\partial t}+b(x,t)u-c(x,t)\frac{\partial^2 u}{\partial x^2}.
$$

And the initial conditions of the form

$$
u(x,0)+\frac{\partial u(x,0)}{\partial t}=h(x), \ \ 0\leq x\leq 1
$$

and boundary conditions at $x = 0$ and $x = 1$ of the form:

$$
u(0, t) = g_0(t), \ \ u(1, t) = g_1(x), \ \ 0 \leq t \leq T.
$$

Figure: $\mathcal{X}_{\mathscr{B}} = \mathcal{X}_{\mathscr{C}} \cup \mathcal{X}_{\mathscr{B}_{1}} \cup \mathcal{X}_{\mathscr{B}_{2}}$

[Forward Problem: PDEs](#page-8-0)

The approach can be summarized as follows:

- Assume that $\hat{u}(\textbf{\textit{x}}) = w^{\mathsf{T}} \varphi(\textbf{\textit{x}}) + d$, where $\varphi(\cdot) : \mathbb{R}^{dim} \to \mathbb{R}^{h}.$
- Solve the optimization problem:

min
\n
$$
\begin{aligned}\n&\mathbf{w}, d, \mathbf{e} = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\gamma}{2} \mathbf{e}^T \mathbf{e} \\
&\text{s.t} &\mathbf{w}^T \bigg[\varphi_t(\mathbf{x}_{\mathcal{D}}^i) + a(\mathbf{x}_{\mathcal{D}}^i) \varphi_t(\mathbf{x}_{\mathcal{D}}^i) + b(\mathbf{x}_{\mathcal{D}}^i) \varphi(\mathbf{x}_{\mathcal{D}}^i) - c(\mathbf{x}_{\mathcal{D}}^i) \varphi_{xx}(\mathbf{x}_{\mathcal{D}}^i) \bigg] \\
&+ b(\mathbf{x}_{\mathcal{D}}^i) d = f(\mathbf{x}_{\mathcal{D}}^i) + e_i, \, i = 1, \dots, |\mathcal{X}_{\mathcal{D}}|, \\
&\mathbf{w}^T \bigg[\varphi(\mathbf{x}_{\mathcal{C}}^i) + \varphi_t(\mathbf{x}_{\mathcal{C}}^i) \bigg] + d = h(\mathbf{x}_i), \, i = 1, \dots, |\mathcal{X}_{\mathcal{D}}|, \\
&\mathbf{w}^T \varphi(\mathbf{x}_{\mathcal{D}_1}^i) + d = g_0(t_i), \, i = 1, \dots, |\mathcal{X}_{\mathcal{D}_1}|, \\
&\mathbf{w}^T \varphi(\mathbf{x}_{\mathcal{D}_2}^i) + d = g_1(t_i), \, i = 1, \dots, |\mathcal{X}_{\mathcal{D}_2}|,\n\end{aligned}
$$

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Forward Problem: PDEs](#page-8-0)

Linear system [⁶] T \mathbf{I} T T $\mathcal{K} + \gamma^{-1} I_{\mathsf{N}} \begin{array}{|c|c|c|} \hline \mathsf{s} & \mathsf{s} & \mathsf{b} \end{array}$ S^T | Δ | **1**_M $\bm{b}^{\mathcal{T}}$ | 1 $^{\mathcal{T}}_M$ | 0 T \cdot T $\overline{}$ α β d T \vert = T $\overline{}$ **f v** 0 T \parallel . (6)

⁶Siamak Mehrkanoon and Johan AK Suykens. "Learning solutions to partial differential equations using LS-SVM". . In: Neurocomputing 159 (2015), pp. 105–116.

[Forward Problem: PDEs](#page-8-0)

O The optimal representation in dual:

$$
\hat{u}(\mathbf{x}) = \mathbf{d} + \sum_{i=1}^{|\mathcal{X}_{\mathcal{D}}|} \alpha_i \left(\left[\nabla_{t_i^{(2)},0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) + \mathbf{a}(\mathbf{x}_{\mathcal{D}}^i) \left[\nabla_{t_1,0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) + \right.
$$
\n
$$
b(\mathbf{x}_{\mathcal{D}}^i) \left[\nabla_{0,0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) - c(\mathbf{x}_{\mathcal{D}}^i) \left[\nabla_{\mathbf{x}_i^{(2)},0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{D}}^i, \mathbf{x}) \right) + \sum_{i=1}^{|\mathcal{X}_{\mathcal{D}}|} \beta_i^1 \left[\nabla_{0,0} \mathbf{K} + \nabla_{t_1,0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{C}}^i, \mathbf{x}) + \sum_{i=1}^{|\mathcal{X}_{\mathcal{D}}|} \beta_i^2 \left[\nabla_{0,0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{B}_1}^i, \mathbf{x}) + \sum_{i=1}^{|\mathcal{X}_{\mathcal{D}}|} \beta_i^2 \left[\nabla_{0,0} \mathbf{K} \right] (\mathbf{x}_{\mathcal{B}_2}^i, \mathbf{x}).
$$

where $[\nabla_{0,0}K](t,s)=\varphi(t)^\mathsf{T}\varphi(s)$ and $[\nabla_{t,0}K](t,s)=\frac{\partial(\varphi(t)^\mathsf{T}\varphi(s))}{\partial t}$ are the kernel function and its derivative respectively.

[Forward Problem: PDEs](#page-8-0)

Nonlinear PDEs

We assume that the nonlinear PDE has the following form:

$$
\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} + f(u) = g(\mathbf{x}), \ \ \mathbf{x} \in \Sigma \in \mathbb{R}^2
$$

subject to the boundary conditions of the form

$$
u(\mathbf{x}) = h(\mathbf{x}), \mathbf{x} \in \partial \Sigma
$$

where f is a nonlinear function.

[Forward Problem: PDEs](#page-8-0)

minimize
\n
$$
\frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\gamma}{2} (\mathbf{e}^T \mathbf{e} + \xi^T \xi)
$$
\nsubject to
\n
$$
\mathbf{w}^T \left[\varphi_{tt}(\mathbf{x}_{\mathscr{D}}^i) + \varphi_{xx}(\mathbf{x}_{\mathscr{D}}^i) \right] + f(u(\mathbf{x}_{\mathscr{D}}^i))
$$
\n
$$
= g(\mathbf{x}_{\mathscr{D}}^i) + e_i, \quad i = 1, ..., |\mathcal{X}_{\mathscr{D}}|,
$$
\n
$$
\mathbf{w}^T \varphi(\mathbf{x}_{\mathscr{D}}^i) + d = u(\mathbf{x}_{\mathscr{D}}^i) + \xi_i, \quad i = 1, ..., |\mathcal{X}_{\mathscr{D}}|,
$$
\n
$$
\mathbf{w}^T \varphi(\mathbf{x}_{\mathscr{B}}^i) + d = h(\mathbf{x}_{\mathscr{B}}^i), \quad i = 1, ..., |\mathcal{X}_{\mathscr{B}}|.
$$
\n(7)

Note that the second set of additional constraints is introduced to keep the optimization problem linear in **w**.

Example 1. Consider the linear second order hyperbolic equation with variable coefficients defined on a rectangular domain:

$$
u_{tt} + 2e^{x+t}u_t + (\sin^2(x+t))u = (1+x^2)u_{xx} + e^{-2t}(x^2 + 4e^{t+x} - \sin^2(t+x) - 3)\sinh(x), 0 < x < 1, 0 < t < T,
$$

with exact solution $u(x, t) = e^{-2t} \sinh(x)$.

The number of collocation points (training points) inside and on the boundary of the domain are as follows:

$$
\bullet \ |\mathcal{X}_{\mathscr{D}}| = 81,
$$

$$
\bullet \, |\mathcal{X}_{\mathscr{C}}| = |\mathcal{X}_{\mathscr{B}_1}| = |\mathcal{X}_{\mathscr{B}_2}| = 10
$$

[Experimental results](#page-21-0)

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Experimental results](#page-21-0)

Figure: Tuning the kernel bandwidth (σ) using validation set. The red circle indicates the location of selected bandwidth.

Table: Numerical result of the proposed method for solving Problem 1 with time interval [0, T].

 7 RK Mohanty. "An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients". In: Applied Mathematics and Computation 165.1 (2005), pp. 229–236.

[Experimental results](#page-21-0)

Table: The effect of number of training points on the approximate solution of Problem 1 with time interval [0, 1].

[Experimental results](#page-21-0)

Example 2. Consider elliptic equation defined on a rectangular domain:

$$
\nabla^2 u(x, y) = \exp(-x)(x - 2 + y^3 + 6y)
$$

with $x, y \in [0, 1]$ and the Dirichlet boundary conditions:

$$
u(0, y) = y^3, u(1, y) = (1 + y^3) \exp(-1)
$$

and

$$
u(x, 0) = x \exp(-x), \ \ u(x, 1) = x \exp(-x)(x + 1)
$$

The exact solution is $u(x, y) = e^{-x}(x + y^3)$.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Experimental results](#page-21-0)

Figure: (b) 100 training points inside the domain $[0, 1] \times [0, 1]$ are used for training, (c) 900 points inside the domain $[0, 1] \times [0, 1]$ are used for testing.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Experimental results](#page-21-0)

Example 3. Consider the linear second order elliptic PDE:

$$
\nabla^2 u(x, y) = 4x \cos(x) + (5 - x^2 - y^2) \sin(x)
$$
 (8)

defined on a circular domain, i.e.

$$
\Sigma := \left\{ (x,y) \, \Big| \, x^2 + y^2 - 1 = 0, \ -1 \leq x \leq 1, -1 \leq y \leq 1 \right\}
$$

with the Dirichlet condition $u(x, y) = 0$ on $\partial \Sigma$. The exact solution is given by $u(x, y) = (x^2 + y^2 - 1) \sin(x)$.

\n- $$
|\mathcal{X}_{\mathcal{D}}| = 45
$$
\n- $|\mathcal{X}_{\mathcal{B}}| = 19$
\n

[Experimental results](#page-21-0)

[Experimental results](#page-21-0)

Table: Numerical result of the proposed method for solving Problem 3

^aAndrás Sóbester, Prasanth B Nair, and Andy J Keane. "Genetic programming approaches for solving elliptic partial differential equations". In: IEEE transactions on evolutionary computation 12.4 (2008), pp. 469–478.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Experimental results](#page-21-0)

Example 4. Consider an example of nonlinear PDE

$$
\nabla^2 u(x, y) + u(x, y)^2 = \sin(\pi x) \left(2 - (\pi y)^2 + t^4 \sin(\pi x)\right)
$$
 (9)

defined on a circular domain, i.e.

$$
\Sigma := \left\{ (x,y) \, \Big| \, x^2 + y^2 - 1 = 0, \ -1 \leq x \leq 1, -1 \leq y \leq 1 \right\}
$$

with the Dirichlet condition on $\partial \Sigma$. The exact solution is given by $u(x, y) = y^2 \sin(\pi x)$.

\n- $$
|\mathcal{X}_{\mathcal{D}}| = 24
$$
\n- $|\mathcal{X}_{\mathcal{B}}| = 19$
\n

[Experimental results](#page-21-0)

Figure: Obtained model error for problem 4.

0000000000

[Forward Problem: DAEs](#page-33-0)

DAEs:

Dynamical processes that are constrained e.g. by:

- **o** conservation laws
- balance conditions
- geometric conditions

Known as descriptor, implicit or singular systems.

concentrations, populations of species, or just numbers of cells

Numerous applications in Economical, biological or chemical systems.

- x and y are considered as differential and algebraic variables respectively.
- **o** DAEs are characterized by their index
	- If $\frac{\partial g}{\partial y}$ is nonsingular \Rightarrow the index is 1

- \bullet x and y are considered as differential and algebraic variables respectively.
- **o** DAEs are characterized by their index
	- If $\frac{\partial g}{\partial y}$ is nonsingular \Rightarrow the index is 1

- x and y are considered as differential and algebraic variables respectively.
- DAEs are characterized by their index
	- If $\frac{\partial g}{\partial y}$ is nonsingular \Rightarrow the index is 1

- x and y are considered as differential and algebraic variables respectively.
- **o** DAEs are characterized by their index
- If $\frac{\partial g}{\partial y}$ is nonsingular \Rightarrow the index is 1.

[Forward Problem: DAEs](#page-33-0)

Initial value problems (IVPs):

Consider a linear time varying IVPs in DAEs of the form

 $Z(t)\dot{X}(t) = A(t)X(t) + B(t)u(t), t \in [t_{in}, t_{f}], X(t_{in}) = X_{0},$

- $\mathcal{Z}(t)$ is singular on $[t_{\mathit{in}},t_{\mathit{f}}]$ with variable rank and the DAE may have an index that is larger than one.
- When $Z(t)$ is nonsingular, DAE can be converted to an equivalent explicit ODE system.

[Forward Problem: DAEs](#page-33-0)

Assume that an approximate solution to *i*-th equation:

 $\hat{x_i}(t) = w_i^T \varphi(t) + d_i$

where $\varphi(\cdot): \mathbb{R} \to \mathbb{R}^h$ is the feature map and h is the dimension of the feature space.

Primal Problem

minimize w_i, d_i, e^i_ℓ subject to

$$
\frac{1}{2}\sum_{\ell=1}^m w_{\ell}^Tw_{\ell} + \frac{\gamma}{2}\sum_{\ell=1}^m e_{\ell}^Te_{\ell}
$$

\n
$$
ZW^Tw = A[W^T\Phi + D] + G + E,
$$

\n
$$
W^T\varphi(t_1) + D_{:,1} = X_0
$$

The solution in dual form becomes:

$$
\hat{\mathbf{x}}_{\ell}(t) = \sum_{v=1}^{m} \sum_{i=2}^{N} \alpha_{i}^{v} \bigg(z_{v\ell}(t_{i}) [\nabla_{1}^{0} K](t_{i}, t) - a_{v\ell}(t_{i}) [\nabla_{0}^{0} K](t_{i}, t) \bigg) +
$$

$$
\beta_{\ell} [\nabla_{0}^{0} K](t_{1}, t) + d_{\ell}, \ \ell = 1, ..., m.
$$

 \bullet α , β and d follow from a square linear system. [See $^{8}]$

⁸Siamak Mehrkanoon and Johan AK Suykens. "LS-SVM approximate solution to linear time varying descriptor systems". In: Automatica 48.10 (2012), pp. 2502–2511.

[Forward Problem: DAEs](#page-33-0)

Example 1 Consider the singular system of index-3

$$
Z(t)\dot{X}(t) = A(t)X(t) + B(t)u(t), t \in [0,20], X(0) = X_0
$$

where
$$
Z = \begin{bmatrix} 0 & -t & 0 \\ 1 & 0 & t \\ 0 & 1 & 0 \end{bmatrix}
$$
, $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
and $B(t) = 0$ with $x(0) = [0, e^{-1}, e^{-1}]^T$.
The problem is solved on domain $t \in [0, 20]$ using $N = 70$.

The exact solution is given by

$$
x_1(t) = -t \exp(-(t+1)), \ \ x_2(t) = x_3(t) = \exp(-(t+1)).
$$

[Forward Problem: DAEs](#page-33-0)

Table: Numerical results of the proposed method for solving Example 1 on time interval [0,20], with N number of collocation points.

[Forward Problem: DAEs](#page-33-0)

BVPs in DAEs

Consider linear time varying boundary value problem in DAEs of the following from

> $\overline{Z}(t)\dot{X}(t) = A(t)X(t) + g(t),\,\,t\in[t_{in},t_f],$ $FX(t_{in}) + HX(t_{f}) = X_{0}$

[Forward Problem: DAEs](#page-33-0)

Primal

$$
\underset{w_i, d_i, e_\ell^i}{\text{minimize}}
$$

subject to

1 2 Xm ℓ=1 w T ^ℓ w^ℓ + γ 2 Xm ℓ=1 e T ^ℓ e^ℓ -W^T Φ + D + G + E, F[W^Tϕ(t1) + D:,¹] + H[W^Tϕ(t^N) + D:,¹] = X⁰

Dual

$$
\left[\begin{array}{c|c}\n\mathcal{K} & \mathcal{U} & -\mathcal{F}_{A} \\
\hline\n\mathcal{U}^T & \Delta & \Pi \\
\hline\n-\mathcal{F}_{A}^T & \Pi^T & 0_{m \times m}\n\end{array}\right]\n\left[\begin{array}{c|c}\n\alpha \\
\beta \\
\hline\nD_{:,1}\n\end{array}\right] = \n\left[\begin{array}{c}\n\tilde{G} \\
\hline\nX_0 \\
\hline\n0\n\end{array}\right]
$$

The model in the dual form becomes:

$$
\hat{x}_{\ell}(t) = \sum_{v=1}^{m} \sum_{i=2}^{N-1} \alpha_{i}^{v} \bigg(z_{v\ell}(t_{i}) [\nabla_{1}^{0} K](t_{i}, t) - a_{v\ell}(t_{i}) [\nabla_{0}^{0} K](t_{i}, t) \bigg) + \\ \sum_{v=1}^{m} \beta_{v} \bigg([\nabla_{0}^{0} K](t_{1}, t) f_{v\ell} + [\nabla_{0}^{0} K](t_{N}, t) h_{v\ell} \bigg) + \\ b_{\ell}, \ell = 1, ..., m.
$$

Here $[\nabla^0_0\mathcal{K}](t,s)$ and $[\nabla^0_1\mathcal{K}](t,s)$ are defined as previously. α_{l}^{V} and β_{ℓ} are Lagrange multipliers.

Example 2 Consider the linear time varying index one boundary value problem of DAE given by:

$$
Z(t)\dot{X}(t)=A(t)X(t)+g(t),\ t\in[0,1],
$$

where
$$
Z = \begin{bmatrix} 1 & -t & t^2 \\ 0 & 1 & -t \\ 0 & 0 & 0 \end{bmatrix}
$$
, $A = \begin{bmatrix} -1 & (t+1) & -(t^2 + 2t) \\ 0 & 1 & 1-t \\ 0 & 0 & -1 \end{bmatrix}$ with
\n $g(t) = [0, 0, \sin(t)]^T$ and boundary conditions
\n $x_1(0) = 1$, $x_2(1) - x_3(1) = e$.

The exact solution is given by

$$
x_1(t) = e^{-t} + te^{t}
$$
, $x_2(t) = e^{t} + t \sin(t)$, $x_3(t) = \sin(t)$.

The problem is solved on domain $t \in [0, 1]$ using $N = 10$.

Problem Statement

We are given a dynamical system in state-space form

$$
\dot{X}(t) = F(t, X(t), \theta), \tag{10}
$$

The vector θ denotes unknown model parameters which can be either constant or time varying.

Goal

In order to estimate the unknown parameters, the state variable $X(t)$ is observed at N time instants $\{t_i\}_{i=1}^N$, so that we have

$$
Y(t_i) = X(t_i) + E_i, i = 1, ..., N,
$$

where $\{E_i\}_{i=1}^N$ are independent measurement errors with zero mean.

Goal

In order to estimate the unknown parameters, the state variable $X(t)$ is observed at N time instants $\{t_i\}_{i=1}^N$, so that we have

$$
Y(t_i) = X(t_i) + E_i, i = 1, ..., N,
$$

where $\{E_i\}_{i=1}^N$ are independent measurement errors with zero mean.

Estimating the time invariant parameters

First Step

$$
\Phi \hat{\mathbf{x}}_{\ell}(t) = \mathbf{w}_{\ell}^T \varphi(t) + \mathbf{b}_{\ell} = \sum_{i=1}^N \alpha_i^{\ell} \mathbf{K}(t_i, t) + \mathbf{b}_{\ell}, \ \ell = 1, ..., m,
$$

$$
\Phi \frac{d}{dt}\hat{\chi}_{\ell}(t) = W_{\ell}^{\mathsf{T}}\dot{\varphi}(t) = \sum_{i=1}^{N} \alpha_{i}^{\ell} \varphi(t_{i})^{\mathsf{T}}\dot{\varphi}(t) = \sum_{i=1}^{N} \alpha_{i}^{\ell} K_{s}(t_{i}, t), \ \ell = 1, ..., m.
$$

Second Step minimize θ 1 $rac{1}{2}$ \sum_i i $\|\Xi_i\|_2^2$ subject to $\Xi_i = \frac{d}{dt}$ $\frac{d}{dt}\hat{X}(t_i) - F(t_i, \hat{X}(t_i), \theta), i = 1, ..., N.$ If the system is linear in the parameters \Rightarrow a convex optimization problem.

Estimating the time varying parameter

Consider the first order dynamical system of the form:

$$
\frac{dx}{dt} + \theta(t)f(x(t)) = g(t), \ x(0) = x_0 \qquad (11)
$$

f is an arbitrary known function and $\theta(t)$ is the time varying parameter of the system and is considered to be unknown.

The state $x(t)$ has been measured at certain time instants $\{t_i\}_{i=1}^N$ i.e.

$$
y_i = x(t_i) + e_i, i = 1, ..., N
$$

where e_i 's are i.i.d. random errors with zero mean and constant variance.

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Inverse Problem: ODEs](#page-49-0)

We assume an explicit LS-SVM model

$$
\hat{\theta}(t) = \mathsf{v}^{\mathsf{T}} \psi(t) + \mathsf{b}_{\theta}
$$

as an approximation for the parameter $\theta(t)$.

We estimate the time-varying coefficient $\theta(t)$ by solving the following optimization problem:

minimize
\n
$$
\frac{1}{\nu, b_{\theta}, \theta} \qquad \frac{1}{2} \nu^T \nu + \frac{\gamma}{2} \theta^T \theta
$$
\nsubject to
\n
$$
\frac{d}{dt} \hat{\chi}(t_i) + \left[\nu^T \psi(t_i) + b_{\theta} \right] f(\hat{\chi}(t_i)) =
$$
\n
$$
\hat{g}(t_i) + \theta_i, \text{ for } i = 1, ..., M.
$$
\n(12)

The solution to [\(12\)](#page-54-0) can be obtained by solving the following dual problem [see a]

$$
\left[\begin{array}{c|c}\nD\Omega D + I_M/\gamma & f(\hat{x}) \\
\hline\nf(\hat{x})^T & 0\n\end{array}\right] \left[\begin{array}{c}\n\alpha \\
b_\theta\n\end{array}\right] = \left[\begin{array}{c}\n\hat{g} - \frac{d\hat{x}}{dt} \\
0\n\end{array}\right]
$$
\n(13)

a^Siamak Mehrkanoon, Tillmann Falck, and Johan AK Suykens. "Parameter estimation for time varying dynamical systems using least squares support vector machines". In: IFAC Proceedings Volumes 45.16 (2012), pp. 1300-1305.

The model in the dual form becomes

$$
\hat{\theta}(t) = v^T \psi(t) + b_{\theta} = \sum_{i=1}^{M} \alpha_i f(\hat{x}_i) K(t_i, t) + b_{\theta}
$$
\n(14)

where K is the kernel function.

Example 1. Consider the following nonlinear scalar dynamical system,

$$
\frac{dx}{dt} - \frac{\cos(t)}{\sin(t) + 2} \cos(x(t)^2) = \cos(t), \ \ x(0) = 1
$$

The aim is to estimate the time varying coefficient $\theta(t) = \frac{\cos(t)}{\sin(t)+2}$ from measured data. For collecting the data:

- Matlab built-in solver ode45 over the domain of [0, 20] with sampling interval $T_s = 0.1$.
- Then we have artificially introduced random noise (Gaussian white noise with noise level η) to the true solution.

Figure: Estimation of time varying parameter of dynamical system formulated in Example 2.

Table: The influence of noise level and number of observed data on the parameter estimates. Parameter η is the std of the noise and N is the number of observed data.

Example 2. Consider the forced Van der Pol's Oscillator:

$$
\dot{x}_1 = x_2, x_1(0) = -5,
$$

\n
$$
\dot{x}_2 = \theta(1 - x_1^2)x_2 + 9x_1 = \sin(50t), x_2(0) = -1
$$

where θ is the unknown parameter. In our study θ is taken as 1.1.

- The true solution is prepared by numerically integrating the equation on domain [0, 10].
- Then the model observation data, i.e $y(t)$, is constructed using sampling interval $T_s = 0.01$ as follows:

$$
y_k = x_1(t_k) + e_k.
$$

[Overview](#page-2-0) [Learning solution of PDEs](#page-8-0) [Learning solution of DAEs](#page-33-0) [Parameter estimation](#page-49-0) [Conclusion](#page-60-0)

[Inverse Problem: ODEs](#page-49-0)

Figure: Estimation of the parameter θ for the forced nonlinear Van der Pol equation from data with observational noise generated using $\eta = 10$.

Conclusion & Future works

- Overview of LS-SVM based models for learning PDEs and DAEs solutions.
- Overview of LS-SVM based model for solving inverse problem in ODEs.
- Exploring and designing new deep architectures.
- **Higher dimensional PDEs.**

Demo

 \bullet Matlab demos:

<https://sites.google.com/view/siamak-mehrkanoon/code-data>

References

- 暈 J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, World Scientific Pub. Co., Singapore, 2002.
- 歸 S. Mehrkanoon, T. Falck and J.A.K Suykens, Approxmate solution to ordinary differential equations using least squares support vector machines0, IEEE-TNNLS 23(9), pp. 1356-1367, 2012.
- 量 S. Mehrkanoon and J.A.K Suykens, LS-SVM approximate solution to linear time varying descriptor systems, Automatica, 48, pp. 2502-2511, 2012.
- 量 S. Mehrkanoon, T. Falck, J.A.K. Suykens, Parameter Estimation for Time Varying Dynamical Systems using Least Squares Support Vector Machines, SYSID 2012, Brussels, Belgium, pp. 1300-1305.
- F

昂

- S. Mehrkanoon and J.A.K Suykens, Learning Solutions to Partial Differential Equations using LS-SVM, Neurocomputing 159, pp. 105-116, 2015.
- F. S. Mehrkanoon, S. Mehrkanoon, J.A.K. Suykens, Parameter estimation of delay differential equations: an integration-free LS-SVM approach, CNSNS, vol. 19, no. 4, pp. 830-841, 2014.
	- S. Mehrkanoon, Deep Neural Kernel Blocks, Neural Networks, 2019.

