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Problem Statements:

Forward problem

Inverse problem

_x(t) = f(x(t); p)

y1; y2; y3; : : : ; yn

(x0; p)

p
∗

x(0) = x0
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Dynamical Systems
Arise frequently in numerous applications including
mathematical modeling and control theory.

Numerical methods must be applied.

Existing numerical approaches

Provide discrete solutions (Runge Kutta, Explicit-Implicit schemes, FDM among
others).

Require a discretization of the domain via meshing (higher dimension can
potentially be a problem)

Depend on index reduction techniques for lowering the index of a DAE system.

Neural networks based approaches suffer from local minima solutions.
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Core

Model

LSSVM

DAEs

PDEs

Constraints

Optimal

Model

Closed form solution

Optimal representation of the solution

Potentially can be used for high dimensional PDEs

Does not require index reduction technique (high index DAEs)
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ϕ(.)

space X

Feature space on X

set of constraints

Target space

w
T
ϕ(.)

RKHS

Gaussian process (probabilistic setting)

LSSVM (optimization setting)
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The primal LS-SVM: [1]

minimize
w,b,e

1
2

wT w +
γ

2
eT e

subject to yi = wTϕ(xi) + b + ei , i = 1, ...,n

The dual LS-SVM:





Ω+ In/γ 1n

1T
n 0





[

α
b

]

=

[

y
0

]

where Ωij = K (xi , xj) = ϕ(xi)
Tϕ(xj).

1J. A. K. Suykens et al. Least Squares Support Vector Machines. World Scientific,
Singapore, 2002.
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LSSVM Model

Primal:

Dual:

d× n, (n ≪ d)

d× n, (d ≪ n)

y(x) = wTϕ(x) + b

y(x) =
∑n
i=1K(x, xi) + b

Fixed Size LSSVM [see2]
Fixed Size semi-supervised KSC based model [see3]

2J. A. K. Suykens et al. Least Squares Support Vector Machines. World Scientific,
Singapore, 2002.

3Siamak Mehrkanoon and Johan AK Suykens. “Large scale semi-supervised
learning using KSC based model”. In: IEEE International Joint Conference on Neural
Networks (IJCNN). 2014.
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Forward Problem: PDEs

Aim

We propose a kernel based method in the LS-SVM framework
[4]. The formulation is derived using the primal-dual setting.

In primal: the solution is in terms of the feature map.

In dual: Kernel based representation of the solution.

4Siamak Mehrkanoon and Johan AK Suykens. “Learning solutions to partial
differential equations using LS-SVM”. . In: Neurocomputing 159 (2015), pp. 105–116.
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Forward Problem: PDEs

One dimensional PDEs
We consider the PDE of the form:

{

L u(x) = f (x), x ∈ Σ ∈ R
2,

Bu(x) = g(x), x ∈ ∂Σ

(1)

Σ is a bounded domain,
which can be either
rectangular or irregular,

∂Σ represents its
boundary.

B and L are differential
operators.

Our goal is to find û that satisfies (1) on the given domain Σ:

minimize
û

‖L û − f‖

subject to Bû = g
(2)
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Forward Problem: PDEs

Formulation of the method

Collocation method: discretization of the
domain Σ into a set of collocation points de-
fined as follows:

X =

{

xk
∣

∣ xk = (xk , tk ), k = 1, . . . , k end

}

,

where X = XD ∪ XB.
−1 0 1

−1

−0.5

0

0.5

1

1.5

y

x

�−XB• − XD

Formulation of the method

One can rewrite (1) as the following optimization problem:

minimize
û

1

2

|XD |
∑

i=1

[

(L [û]− f )(x i
D
)

]2

subject to B[û(x j
B
)] = g(x j

B
), j = 1, . . . , |XB|.

(3)
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Forward Problem: PDEs

Consider the case where L is defined as follows:

L ≡
∂2u

∂t2
+ a(x , t)

∂u

∂t
+ b(x , t)u − c(x , t)

∂2u

∂x2
.

subject to a Dirichlet boundary condition, i.e.

u(x) = g(x) for all x ∈ ∂Σ.

The approach can be summarized as follows:

Steps needed

Assume that a general approximate solution is of the following form:

û(x) = wTϕ(x) + d (4)

where ϕ(·) : R
dim → R

h is the feature map.
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Forward Problem: PDEs

Solve the optimization problem:

minimize
w,d,e

1

2
wT w +

γ

2
eT e

subject to wT
[

ϕtt (x
i

D
) + a(x i

D
)ϕt (x

i
D
) + b(x i

D
)ϕ(x i

D
)−

c(x i
D
)ϕxx (x

i
D
)

]

+ b(x i
D
)d = f (x i

D
) + ei , i = 1, . . . , |XD |,

wTϕ(x i
B
) + d = g(ti ), i = 1, . . . , |XB|.
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Forward Problem: PDEs

Linear system [5]









K+ γ−1IN S B b

ST
B

∆B 1M

bT 1T
M 0

















α

β

d









=









f

g

0









(5)

5Siamak Mehrkanoon and Johan AK Suykens. “Learning solutions to partial
differential equations using LS-SVM”. . In: Neurocomputing 159 (2015), pp. 105–116.
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Forward Problem: PDEs

The optimal representation in dual:

û(x) =
|XD |
∑

i=1

αi

(

[

∇
t(2)1 ,0

K
]

(x i
D
, x) + a(x i

D
)
[

∇t1,0 K
]

(x i
D
, x)+

b(x i
D
)
[

∇0,0 K
]

(x i
D
, x)− c(x i

D
)
[

∇
x(2)

1 ,0
K
]

(x i
D
, x)

)

+

|XB|
∑

i=1

β i

[

∇0,0 K
]

(x i
B
, x) + d .

where [∇0,0K ](t , s) = ϕ(t)Tϕ(s) and [∇t,0K ](t , s) = ∂(ϕ(t)T ϕ(s))
∂t are the kernel

function and its derivative respectively.
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Forward Problem: PDEs

Rectangular domains

Consider the case where L is defined as follows:

L ≡
∂2u

∂t2
+ a(x , t)

∂u

∂t
+ b(x , t)u − c(x , t)

∂2u

∂x2
.

And the initial conditions of the form

u(x , 0) +
∂u(x , 0)

∂t
= h(x), 0 ≤ x ≤ 1

and boundary conditions at x = 0 and x = 1 of the
form:

u(0, t) = g0(t), u(1, t) = g1(x), 0 ≤ t ≤ T .

a b

0

T

t

x

XD
XB1
XB2XC

Figure:
XB = XC ∪ XB1 ∪ XB2
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Forward Problem: PDEs

The approach can be summarized as follows:

Assume that û(x) = wTϕ(x) + d , where ϕ(·) : R
dim → R

h.

Solve the optimization problem:

min
w,d,e

1

2
wT w +

γ

2
eT e

s.t wT
[

ϕtt (x
i

D
) + a(x i

D
)ϕt (x

i
D
) + b(x i

D
)ϕ(x i

D
)− c(x i

D
)ϕxx (x

i
D
)

]

+ b(x i
D
)d = f (x i

D
) + ei , i = 1, . . . , |XD |,

wT
[

ϕ(x i
C
) +ϕt (x

i
C
)

]

+ d = h(xi ), i = 1, . . . , |XC |,

wTϕ(x i
B1

) + d = g0(ti ), i = 1, . . . , |XB1
|,

wTϕ(x i
B2

) + d = g1(ti ), i = 1, . . . , |XB2
|,
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Forward Problem: PDEs

Linear system [6]









K+ γ−1IN S b

ST ∆ 1M

bT 1T
M 0

















α

β

d









=









f

v

0









. (6)

6Siamak Mehrkanoon and Johan AK Suykens. “Learning solutions to partial
differential equations using LS-SVM”. . In: Neurocomputing 159 (2015), pp. 105–116.
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Forward Problem: PDEs

The optimal representation in dual:

û(x) = d +

|XD |
∑

i=1

αi

(

[

∇
t(2)1 ,0

K
]

(x i
D
, x) + a(x i

D
)
[

∇t1,0 K
]

(x i
D
, x)+

b(x i
D
)
[

∇0,0 K
]

(x i
D
, x)− c(x i

D
)
[

∇
x(2)

1 ,0
K
]

(x i
D
, x)

)

+

|XC |
∑

i=1

β 1
i

[

∇0,0 K +∇t1,0 K
]

(x i
C
, x)+

|XB1
|

∑

i=1

β 2
i

[

∇0,0 K
]

(x i
B1

, x)+

|XB2
|

∑

i=1

β 3
i

[

∇0,0 K
]

(x i
B2

, x).

where [∇0,0K ](t , s) = ϕ(t)Tϕ(s) and [∇t,0K ](t , s) = ∂(ϕ(t)T ϕ(s))
∂t are the kernel

function and its derivative respectively.
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Forward Problem: PDEs

Nonlinear PDEs

We assume that the nonlinear PDE has the following form:

∂2u

∂t2
+
∂2u

∂x2
+ f (u) = g(x), x ∈ Σ ∈ R

2

subject to the boundary conditions of the form

u(x) = h(x), x ∈ ∂Σ

where f is a nonlinear function.
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Forward Problem: PDEs

minimize
w ,d ,e,ξ,u

1
2

wT w +
γ

2
(eT e + ξTξ)

subject to wT
[

ϕtt(x
i
D) +ϕxx(x

i
D)

]

+ f (u(x i
D))

= g(x i
D) + ei , i = 1, . . . , |XD |,

wTϕ(x i
D) + d = u(x i

D) + ξi , i = 1, . . . , |XD |,

wTϕ(x i
B) + d = h(x i

B), i = 1, . . . , |XB|.

(7)

Note that the second set of additional constraints is introduced
to keep the optimization problem linear in w .
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Experimental results

Example 1. Consider the linear second order hyperbolic equation with variable
coefficients defined on a rectangular domain:

utt + 2ex+t ut + (sin2(x + t))u = (1 + x2)uxx + e−2t
(

x2+

4et+x − sin2(t + x)− 3
)

sinh(x), 0 < x < 1, 0 < t < T ,

with exact solution u(x , t) = e−2t sinh(x).

The number of collocation points (training points) inside and on
the boundary of the domain are as follows:

|XD | = 81,

|XC | = |XB1 | = |XB2 | = 10
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Experimental results
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Experimental results
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Figure: Tuning the kernel bandwidth (σ) using validation set. The red
circle indicates the location of selected bandwidth.
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Experimental results

Table: Numerical result of the proposed method for solving Problem 1 with time
interval [0,T ].

RMSE L ∞

Method T Training Test Training Test

LSSVM 1 1.75 × 10−5 1.94 × 10−5 5.31 × 10−5 6.71 × 10−5

FDM [7] −−−−− 0.74 × 10−4 −−−−− −−−−−

LSSVM 2 3.18 × 10−5 3.49 × 10−5 1.30 × 10−4 1.51 × 10−4

FDM −−−−− 0.43 × 10−4 −−−−− −−−−−

7RK Mohanty. “An unconditionally stable finite difference formula for a linear
second order one space dimensional hyperbolic equation with variable coefficients”.
In: Applied Mathematics and Computation 165.1 (2005), pp. 229–236.
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Experimental results

Table: The effect of number of training points on the approximate solution of Problem
1 with time interval [0, 1].

RMSE L ∞

|XD | σ Training Test Training Test

4 225.04 1.76 × 10−3 2.78 × 10−3 3.50 × 10−3 1.01 × 10−2

25 12.61 6.26 × 10−4 7.57 × 10−4 1.76 × 10−3 2.32 × 10−3

49 5.99 2.58 × 10−4 2.86 × 10−4 7.31 × 10−4 8.93 × 10−4

81 4.13 1.75 × 10−5 1.94 × 10−5 5.31 × 10−5 6.71 × 10−5
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Experimental results

Example 2. Consider elliptic equation defined on a rectangular domain:

∇2u(x , y) = exp(−x)(x − 2 + y3 + 6y)

with x , y ∈ [0, 1] and the Dirichlet boundary conditions:

u(0, y) = y3, u(1, y) = (1 + y3) exp(−1)

and
u(x , 0) = x exp(−x), u(x , 1) = x exp(−x)(x + 1)

The exact solution is u(x , y) = e−x (x + y3).
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Experimental results
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Figure: (b) 100 training points inside the domain [0, 1]× [0, 1] are used for training,
(c) 900 points inside the domain [0, 1]× [0, 1] are used for testing.
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Experimental results

Example 3. Consider the linear second order elliptic PDE:

∇2u(x , y) = 4x cos(x) + (5 − x2 − y2) sin(x) (8)

defined on a circular domain, i.e.

Σ :=

{

(x , y)
∣

∣

∣
x2 + y2 − 1 = 0, −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

}

with the Dirichlet condition u(x , y) = 0 on ∂Σ. The exact solution is given by
u(x , y) = (x2 + y2 − 1) sin(x).

|XD | = 45

|XB| = 19
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Experimental results
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Experimental results

Table: Numerical result of the proposed method for solving Problem 3

MSE L ∞

Problem Method Training Test Training Test

3 LSSVM 5.18 × 10−11 5.94 × 10−11 1.91 × 10−5 2.71 × 10−5

GPA [a] −−−−− 2.04 × 10−4 −−−−− −−−−−

aAndrás Sóbester, Prasanth B Nair, and Andy J Keane. “Genetic programming
approaches for solving elliptic partial differential equations”. In: IEEE transactions on
evolutionary computation 12.4 (2008), pp. 469–478.
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Experimental results

Example 4. Consider an example of nonlinear PDE

∇2u(x , y) + u(x , y)2 = sin(πx)
(

2 − (πy)2 + t4 sin(πx)
)

(9)

defined on a circular domain, i.e.

Σ :=

{

(x , y)
∣

∣

∣
x2 + y2 − 1 = 0, −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

}

with the Dirichlet condition on ∂Σ. The exact solution is given by u(x , y) = y2 sin(πx).

|XD | = 24

|XB| = 19.
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Experimental results
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Figure: Obtained model error for problem 4.
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Forward Problem: DAEs

DAEs:

Dynamical processes that are
constrained e.g. by:

conservation laws

balance conditions

geometric conditions

Known as descriptor, implicit or
singular systems.

concentrations, populations of species, or
just numbers of cells

Numerous applications in
Economical, biological or
chemical systems.
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Forward Problem: DAEs

A semi-explicit DAE or an ODE with constraints:

ẋ =f (x , y , t)

0 =g(x , y , t).

x and y are considered as differential and algebraic
variables respectively.

DAEs are characterized by their index

If ∂g
∂y is nonsingular ⇒ the index is 1
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Forward Problem: DAEs

Initial value problems (IVPs):

Consider a linear time varying IVPs in DAEs of the form

Z (t)Ẋ (t) = A(t)X (t) + B(t)u(t), t ∈ [tin, tf ], X (tin) = X0,

Z (t) is singular on [tin, tf ] with variable rank and the DAE may
have an index that is larger than one.

When Z (t) is nonsingular, DAE can be converted to an
equivalent explicit ODE system.
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Forward Problem: DAEs

Assume that an approximate solution to i-th equation:

x̂i(t) = wT
i ϕ(t) + di

where ϕ(·) : R → R
h is the feature map and h is the dimension of the

feature space.

Primal Problem

minimize
wi ,di ,ei

ℓ

1
2

m
∑

ℓ=1

wT
ℓ wℓ +

γ

2

m
∑

ℓ=1

eT
ℓ eℓ

subject to Z W TΨ = A
[

W TΦ+ D
]

+ G + E ,

W Tϕ(t1) + D:,1 = X0
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Forward Problem: DAEs

The solution in dual form becomes:

x̂ℓ(t) =
m
∑

v=1

N
∑

i=2

αv
i

(

zvℓ(ti)[∇0
1K ](ti , t)− avℓ(ti)[∇0

0K ](ti , t)
)

+

βℓ [∇
0
0K ](t1, t) + dℓ, ℓ = 1, ...,m.

α, β and d follow from a square linear system.

[See8]

8Siamak Mehrkanoon and Johan AK Suykens. “LS-SVM approximate solution to
linear time varying descriptor systems”. In: Automatica 48.10 (2012), pp. 2502–2511.
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Forward Problem: DAEs

Example 1 Consider the singular system of index-3

Z (t)Ẋ (t) = A(t)X (t) + B(t)u(t), t ∈ [0,20], X (0) = X0

where Z =

[

0 −t 0
1 0 t
0 1 0

]

, A =

[

−1 0 0
0 −1 0
0 0 −1

]

and B(t) = 0 with x(0) = [0,e−1,e−1]T .
The problem is solved on domain t ∈ [0,20] using N = 70.
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Forward Problem: DAEs

The exact solution is given by

x1(t) = −t exp(−(t + 1)), x2(t) = x3(t) = exp(−(t + 1)).
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Forward Problem: DAEs

Table: Numerical results of the proposed method for solving Example 1 on time
interval [0,20], with N number of collocation points.

MSEtest

N x1 x2 x3

20 1.33 × 10−5 4.82 × 10−8 4.73 × 10−7

40 1.38 × 10−8 1.39 × 10−10 3.14 × 10−9

60 4.82 × 10−10 3.54 × 10−12 2.38 × 10−10
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Forward Problem: DAEs

BVPs in DAEs

Consider linear time varying boundary value problem in DAEs
of the following from

Z (t)Ẋ (t) = A(t)X (t) + g(t), t ∈ [tin, tf ],

FX (tin) + HX (tf ) = X0,
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Forward Problem: DAEs

Primal

minimize
wi ,di ,ei

ℓ

1
2

m
∑

ℓ=1

wT
ℓ wℓ +

γ

2

m
∑

ℓ=1

eT
ℓ eℓ

subject to Z W TΨ = A
[

W TΦ+ D
]

+ G + E ,

F [W Tϕ(t1) + D:,1] + H[W Tϕ(tN) + D:,1] = X0

Dual
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Forward Problem: DAEs

The model in the dual form becomes:

x̂ℓ(t) =
m
∑

v=1

N−1
∑

i=2

αv
i

(

zvℓ(ti)[∇
0
1K ](ti , t)− avℓ(ti)[∇

0
0K ](ti , t)

)

+

m
∑

v=1

βv

(

[∇0
0K ](t1, t)fvℓ + [∇0

0K ](tN , t)hvℓ

)

+

bℓ, ℓ = 1, ...,m.

Here [∇0
0K ](t , s) and [∇0

1K ](t , s) are defined as previously.
αv

i and βℓ are Lagrange multipliers.
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Forward Problem: DAEs

Example 2 Consider the linear time varying index one boundary
value problem of DAE given by:

Z (t)Ẋ (t) = A(t)X (t) + g(t), t ∈ [0,1],

where Z =





1 −t t2

0 1 −t
0 0 0



 , A =





−1 (t + 1) −(t2 + 2t)
0 1 1 − t
0 0 −1



 with

g(t) = [0,0, sin(t)]T and boundary conditions

x1(0) = 1, x2(1)− x3(1) = e.
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Forward Problem: DAEs

The exact solution is given by

x1(t) = e−t + tet , x2(t) = et + t sin(t), x3(t) = sin(t).

The problem is solved on domain t ∈ [0, 1] using N = 10.
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Inverse Problem: ODEs

Problem Statement

We are given a dynamical system in state-space form

Ẋ (t) = F (t ,X (t), θ), (10)

The vector θ denotes unknown model parameters which can be
either constant or time varying.
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Inverse Problem: ODEs

Core

Model

LSSVM

ODE

DDE

Constraints

Optimal

Model

Goal

In order to estimate the unknown parameters, the state variable
X (t) is observed at N time instants {ti}N

i=1, so that we have

Y (ti) = X (ti) + Ei , i = 1, ...,N,

where {Ei}
N
i=1 are independent measurement errors with zero

mean.
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Inverse Problem: ODEs

Estimating the time invariant parameters

First Step

x̂ℓ(t) = wT
ℓ ϕ(t) + bℓ =

∑N
i=1 α

ℓ
i K (ti , t) + bℓ, ℓ = 1, ...,m,

d
dt x̂ℓ(t) = wT

ℓ ϕ̇(t) =
∑N

i=1 α
ℓ
i ϕ(ti )

T ϕ̇(t) =
∑N

i=1 α
ℓ
i Ks(ti , t), ℓ = 1, ...,m.

Second Step

minimize
θ

1

2

∑

i

‖Ξi‖
2
2

subject to Ξi =
d

dt
X̂(ti )− F (ti , X̂(ti ), θ), i = 1, ...,N.

If the system is linear in the parameters ⇒ a convex optimization problem.
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Inverse Problem: ODEs

Estimating the time varying parameter

Consider the first order dynamical system of the form:

dx
dt

+ θ(t)f (x(t)) = g(t), x(0) = x0 (11)

f is an arbitrary known function and θ(t) is the time varying
parameter of the system and is considered to be unknown.

The state x(t) has been measured at certain time instants {ti}N
i=1 i.e.

yi = x(ti) + ei , i = 1, ...,N

where ei ’s are i.i.d. random errors with zero mean and constant vari-
ance.
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Inverse Problem: ODEs

We assume an explicit LS-SVM model

θ̂(t) = vTψ(t) + bθ

as an approximation for the parameter θ(t).

We estimate the time-varying coefficient θ(t) by solving the following optimization prob-
lem:

minimize
v,bθ,e

1

2
vT v +

γ

2
eT e

subject to
d

dt
x̂(ti ) +

[

vTψ(ti ) + bθ

]

f (x̂(ti )) =

ĝ(ti ) + ei , for i = 1, ...,M.

(12)
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Inverse Problem: ODEs

The solution to (12) can be obtained by solving the following dual problem [seea]





DΩD + IM/γ f (x̂)

f (x̂)T 0









α

bθ



 =





ĝ − dx̂
dt

0



 (13)

aSiamak Mehrkanoon, Tillmann Falck, and Johan AK Suykens. “Parameter
estimation for time varying dynamical systems using least squares support vector
machines”. In: IFAC Proceedings Volumes 45.16 (2012), pp. 1300–1305.

The model in the dual form becomes

θ̂(t) = vTψ(t) + bθ =
M
∑

i=1

αi f (x̂i )K (ti , t) + bθ (14)

where K is the kernel function.
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Inverse Problem: ODEs

Example 1. Consider the following nonlinear scalar dynamical
system,

dx
dt

−
cos(t)

sin(t) + 2
cos(x(t)2) = cos(t), x(0) = 1

The aim is to estimate the time varying coefficient
θ(t) = cos(t)

sin(t)+2 from measured data. For collecting the data:

Matlab built-in solver ode45 over the domain of [0,20] with
sampling interval Ts = 0.1.

Then we have artificially introduced random noise (Gaussian
white noise with noise level η) to the true solution.
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Inverse Problem: ODEs
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Figure: Estimation of time varying parameter of dynamical system formulated in
Example 2.

Table: The influence of noise level and number of observed data on the parameter
estimates. Parameter η is the std of the noise and N is the number of observed data.

N η MSE

100 0.0 8.34 × 10−5

0.05 3.51 × 10−3

200 0.0 3.06 × 10−6

0.05 2.01 × 10−3
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Inverse Problem: ODEs

Example 2. Consider the forced Van der Pol’s Oscillator:

ẋ1 = x2, x1(0) = −5,

ẋ2 = θ(1 − x2
1 )x2 + 9x1 = sin(50t), x2(0) = −1

where θ is the unknown parameter. In our study θ is taken as
1.1.

The true solution is prepared by numerically integrating the
equation on domain [0, 10].

Then the model observation data, i.e y(t), is constructed
using sampling interval Ts = 0.01 as follows:

yk = x1(tk ) + ek .
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Inverse Problem: ODEs
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Figure: Estimation of the parameter θ for the forced nonlinear Van der
Pol equation from data with observational noise generated using
η = 10.
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Conclusion & Future works

Overview of LS-SVM based models for learning PDEs and DAEs
solutions.

Overview of LS-SVM based model for solving inverse problem in
ODEs.

Exploring and designing new deep architectures.

Higher dimensional PDEs.

Demo

Matlab demos:
https://sites.google.com/view/siamak-mehrkanoon/code-data
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