
Breaking the Mesh:
Solving Partial Differential Equations with Deep Learning

James B. Scoggins and Loïc Gouarin
SMAI 2019 Mini-Symposium, Guidel Plages

17-19h, 13 May 2019

The Lineup

!2

17:00 - James B. Scoggins
Postdoctoral Researcher at CMAP, Ecole Polytechnique, France
Solving partial differential equations with deep learning

17:30 - Philippe Von Wurstemberger
Doctoral Student at ETH Zurich, Switzerland
Overcoming the curse of dimensionality with DNNs: Theoretical
approximation results for PDEs

18:00 - Rémi Gribonval
Research Director at INRIA in Rennes, France
Approximation spaces of deep neural networks

18:30 - Siamak Mehrkanoon
Assistant Professor at Maastricht University, The Netherlands
LS-SVM based solutions to differential equations

James B. Scoggins, Eric Moulines, Marc Massot
SMAI 2019, Guidel Plages

13 May 2019

Solving Partial Differential Equations with Deep Learning

Partial differential equations permeate our world

!4

∂u
∂t

= ℱ[t, x, u, ∇xu, …]

They lay at the heart of predictive modeling

Partial differential equations permeate our world

!4

∂u
∂t

= ℱ[t, x, u, ∇xu, …]

They lay at the heart of predictive modeling

Physical Law
The rate of change of a quantity over time is related to
the local value of that quantity and how it changes in space.

Goal
Solve for the quantity over time and space given
its initial and boundary conditions.

Partial differential equations permeate our world

!4

∂u
∂t

= ℱ[t, x, u, ∇xu, …]

They lay at the heart of predictive modeling

PhysicsEngineering Finance

Modern numerical methods are impressive

!5

Simulation of dynamic stall for a Blackhawk helicopter rotor in forward flight. (credit: NASA ARC).

Simulation of ignition in a box. (credit: SpaceX in collaboration with Marc Massot of CMAP)

Challenges remain for many problems

!6

606 F. Kemm / Applied Mathematics and Computation 320 (2018) 596–613

Fig. 6. Flow around cylindrical pier in shallow water with 1st order Osher scheme at different times. Energy shown.

Fig. 7. Reconstruction of shock profile (dashed line) on finite volume grid with different orders.
the vicinity of shocks. As was pointed out by Roe and Zaide [36–38] , a major role is played by the fact that it is impossible,
at least for gas dynamics and shallow water flows, to split a shock satisfying the Rankine–Hugoniot condition into two
consecutive shocks which both would satisfy the Rankine–Hugoniot condition. This situation improves for higher order, at
least when geometric reconstruction is applied. For the computation of the inter-cell fluxes, two states are available, one at
the left cell boundary and one at the right cell boundary. Thus, for a steady shock it would be sufficient to satisfy

f (q l) = f (q −m) = f (q + m) = f (q r) , (28)
which can easily be achieved by

q −m = q l , q + m = q r . (29)
This is (for a scalar situation) sketched out in Fig. 7 . For the sake of simplicity, in the following, we restrict our considera-
tions to the scalar case. It is easy to see how the results can be transferred back to the systems case.

Fig. 7 shows how the situation improves with increasing order of the scheme. If, for instance, we employ a polynomial
reconstruction in the cell where the shock is located, for high orders, condition (29) can be ensured for almost all shock
positions without sacrificing monotonicity:
Theorem 1. Given the situation depicted in Fig. 7 , let the cell with the shock be [x i −1 / 2 , x i +1 / 2] and !x = x i +1 / 2 − x i −1 / 2 . Further-
more let !q = q r − q l ̸ = 0 . Let the shock be located at x i −1 / 2 + θ!x with θ ∈ [0, 1] .
1. For any θ ∈ [0, 1], a polynomial reconstruction p (n) with degree less or equal two can be found such that condition (29) is

satisfied.
2. In the cell [x i −1 / 2 , x i +1 / 2] , the reconstruction can be made monotone for polynomial degree ≤ n if θ ∈ [1

n +1 , 1 − 1
n +1] .

Proof. Statement 1 is obvious and well known. It was already used by van Leer in his work on higher order methods [62] .
For the proof of statement 2, we can assume, without restriction,

[x i −1 / 2 , x i +1 / 2] = [0 , 1] , q l = 0 , q r = 1 , and θ ≥ 1 / 2 .

Solution accuracy depends on mesh alignment and resolution

time

Friedemann Kemm, App. Math. and Comp. 320:596-613, 2018.

Water flow around circular pillar

carbuncle
phenomenon

unphysical
steady-state

Challenges remain for many problems

!6

606 F. Kemm / Applied Mathematics and Computation 320 (2018) 596–613

Fig. 6. Flow around cylindrical pier in shallow water with 1st order Osher scheme at different times. Energy shown.

Fig. 7. Reconstruction of shock profile (dashed line) on finite volume grid with different orders.
the vicinity of shocks. As was pointed out by Roe and Zaide [36–38] , a major role is played by the fact that it is impossible,
at least for gas dynamics and shallow water flows, to split a shock satisfying the Rankine–Hugoniot condition into two
consecutive shocks which both would satisfy the Rankine–Hugoniot condition. This situation improves for higher order, at
least when geometric reconstruction is applied. For the computation of the inter-cell fluxes, two states are available, one at
the left cell boundary and one at the right cell boundary. Thus, for a steady shock it would be sufficient to satisfy

f (q l) = f (q −m) = f (q + m) = f (q r) , (28)
which can easily be achieved by

q −m = q l , q + m = q r . (29)
This is (for a scalar situation) sketched out in Fig. 7 . For the sake of simplicity, in the following, we restrict our considera-
tions to the scalar case. It is easy to see how the results can be transferred back to the systems case.

Fig. 7 shows how the situation improves with increasing order of the scheme. If, for instance, we employ a polynomial
reconstruction in the cell where the shock is located, for high orders, condition (29) can be ensured for almost all shock
positions without sacrificing monotonicity:
Theorem 1. Given the situation depicted in Fig. 7 , let the cell with the shock be [x i −1 / 2 , x i +1 / 2] and !x = x i +1 / 2 − x i −1 / 2 . Further-
more let !q = q r − q l ̸ = 0 . Let the shock be located at x i −1 / 2 + θ!x with θ ∈ [0, 1] .
1. For any θ ∈ [0, 1], a polynomial reconstruction p (n) with degree less or equal two can be found such that condition (29) is

satisfied.
2. In the cell [x i −1 / 2 , x i +1 / 2] , the reconstruction can be made monotone for polynomial degree ≤ n if θ ∈ [1

n +1 , 1 − 1
n +1] .

Proof. Statement 1 is obvious and well known. It was already used by van Leer in his work on higher order methods [62] .
For the proof of statement 2, we can assume, without restriction,

[x i −1 / 2 , x i +1 / 2] = [0 , 1] , q l = 0 , q r = 1 , and θ ≥ 1 / 2 .

Solution accuracy depends on mesh alignment and resolution

time

Friedemann Kemm, App. Math. and Comp. 320:596-613, 2018.

Water flow around circular pillar

carbuncle
phenomenon

unphysical
steady-state

Mesh must be adapted to align with critical flow structures to maintain accuracy.

!7

Challenges remain for many problems
Mesh size (and cost) scales exponentially with dimension

n

n
n

Number of cells = nd CPU Cost ∝ Number of Cells

Dimension

Cost

!7

Challenges remain for many problems
Mesh size (and cost) scales exponentially with dimension

n

n
n

Number of cells = nd CPU Cost ∝ Number of Cells

Dimension

Cost

Curse of dimensionality: requires multi-resolution, high-order, or other schemes to
solve complex problems in a reasonable amount of time.

Can we remove the mesh completely?

!8

Can we remove the mesh completely?

!8

u(tn, xi)

u(tn−1, xj)

Conventional Discretization Methods

Problem converted to large system
of ordinary differential equations

∂ui

∂t
= F(u1, …, uN)

Can we remove the mesh completely?

!8

u(tn, xi)

u(tn−1, xj)

Conventional Discretization Methods

Problem converted to large system
of ordinary differential equations

∂ui

∂t
= F(u1, …, uN)

unphysical

physical
[t
x] ANN u(t, x)

θ

Deep Learning Approach

Problem converted to optimization
of neural network parameters.

min
θ ∑

(t,x)i

∂u(θ)
∂t

− ℱ[u(θ)]

Neural Networks

!9

(Artificial) Neural Networks

!10

Frank Rosenblatt developed first perceptron
in 1958 to model the decision making of a fly.

F. Rosenblatt, Psychological Review 65(6):386-408, 1958.

(Artificial) Neural Networks

!10

Frank Rosenblatt developed first perceptron
in 1958 to model the decision making of a fly.

F. Rosenblatt, Psychological Review 65(6):386-408, 1958.

(Artificial) Neural Networks

!10

Frank Rosenblatt developed first perceptron
in 1958 to model the decision making of a fly.

F. Rosenblatt, Psychological Review 65(6):386-408, 1958.

(Artificial) Neural Networks

!10

Frank Rosenblatt developed first perceptron
in 1958 to model the decision making of a fly.

F. Rosenblatt, Psychological Review 65(6):386-408, 1958.

Multilayer Neural Networks

!11

Credit: https://github.com/PetarV-

Multilayer Neural Networks

!11

Universal Approximation Theorem: A standard multilayer feedforward network with
a locally bounded piecewise continuous activation function can approximate any
continuous function to any degree of accuracy…

Leshno et al., Stern School of Business Working Paper Series STERN IS-92-13, 1992.

Credit: https://github.com/PetarV-

Modern networks leverage complex structure

!12

self-driving cars60,61. Companies such as Mobileye and NVIDIA are
using such ConvNet-based methods in their upcoming vision sys-
tems for cars. Other applications gaining importance involve natural
language understanding14 and speech recognition7.

Despite these successes, ConvNets were largely forsaken by the
mainstream computer-vision and machine-learning communities
until the ImageNet competition in 2012. When deep convolutional
networks were applied to a data set of about a million images from
the web that contained 1,000 different classes, they achieved spec-
tacular results, almost halving the error rates of the best compet-
ing approaches1. This success came from the efficient use of GPUs,
ReLUs, a new regularization technique called dropout62, and tech-
niques to generate more training examples by deforming the existing
ones. This success has brought about a revolution in computer vision;
ConvNets are now the dominant approach for almost all recognition
and detection tasks4,58,59,63–65 and approach human performance on
some tasks. A recent stunning demonstration combines ConvNets
and recurrent net modules for the generation of image captions
(Fig. 3).

Recent ConvNet architectures have 10 to 20 layers of ReLUs, hun-
dreds of millions of weights, and billions of connections between
units. Whereas training such large networks could have taken weeks
only two years ago, progress in hardware, software and algorithm
parallelization have reduced training times to a few hours.

The performance of ConvNet-based vision systems has caused
most major technology companies, including Google, Facebook,

Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly
growing number of start-ups to initiate research and development
projects and to deploy ConvNet-based image understanding products
and services.

ConvNets are easily amenable to efficient hardware implemen-
tations in chips or field-programmable gate arrays66,67. A number
of companies such as NVIDIA, Mobileye, Intel, Qualcomm and
Samsung are developing ConvNet chips to enable real-time vision
applications in smartphones, cameras, robots and self-driving cars.

Distributed representations and language processing
Deep-learning theory shows that deep nets have two different expo-
nential advantages over classic learning algorithms that do not use
distributed representations21. Both of these advantages arise from the
power of composition and depend on the underlying data-generating
distribution having an appropriate componential structure40. First,
learning distributed representations enable generalization to new
combinations of the values of learned features beyond those seen
during training (for example, 2n combinations are possible with n
binary features)68,69. Second, composing layers of representation in
a deep net brings the potential for another exponential advantage70
(exponential in the depth).

The hidden layers of a multilayer neural network learn to repre-
sent the network’s inputs in a way that makes it easy to predict the
target outputs. This is nicely demonstrated by training a multilayer
neural network to predict the next word in a sequence from a local

Figure 3 | From image to text. Captions generated by a recurrent neural
network (RNN) taking, as extra input, the representation extracted by a deep
convolution neural network (CNN) from a test image, with the RNN trained to
‘translate’ high-level representations of images into captions (top). Reproduced

with permission from ref. 102. When the RNN is given the ability to focus its
attention on a different location in the input image (middle and bottom; the
lighter patches were given more attention) as it generates each word (bold), we
found86 that it exploits this to achieve better ‘translation’ of images into captions.

Vision
Deep CNN

Language
Generating RNN

A group of people
shopping at an outdoor

market.

There are many
vegetables at the

fruit stand.

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.

A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

4 4 0 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

Automatic image captioning

LeCun, Bengio, Hinton. Nature 25:436-444, 2015.

Learning

!13

A network is said to learn if its weights are optimized against some objective
function. In practice, this typically means that a cost function is minimized.

Learning

!13

A network is said to learn if its weights are optimized against some objective
function. In practice, this typically means that a cost function is minimized.

Deep Learning refers to training an ANN with many hidden layers,
the network is deep.

(Stochastic) Gradient Descent

!14

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

Define neural network: f(X ; θ) ↦ Ŷ

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

Define a cost function: ℒ =
1
n

n

∑
i=1

li =
1
n

n

∑
i=1

f(Xi ; θ) − Yi
2

2

Define neural network: f(X ; θ) ↦ Ŷ

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

Define a cost function: ℒ =
1
n

n

∑
i=1

li =
1
n

n

∑
i=1

f(Xi ; θ) − Yi
2

2

Define neural network: f(X ; θ) ↦ Ŷ

Minimize cost function: θ* = argmin
θ

ℒ

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

Define a cost function: ℒ =
1
n

n

∑
i=1

li =
1
n

n

∑
i=1

f(Xi ; θ) − Yi
2

2

Define neural network: f(X ; θ) ↦ Ŷ

Minimize cost function: θ* = argmin
θ

ℒ

Algorithm:

θk+1 = θk − λ∇θℒ

1. Initialize weights

2. Update based on gradient

3. Repeat until convergence

θ0 = 𝒩(0, μ)

lim
k→∞

θk = θ*

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

Define a cost function: ℒ =
1
n

n

∑
i=1

li =
1
n

n

∑
i=1

f(Xi ; θ) − Yi
2

2

Define neural network: f(X ; θ) ↦ Ŷ

Minimize cost function: θ* = argmin
θ

ℒ

Algorithm:

θk+1 = θk − λ∇θℒ

1. Initialize weights

2. Update based on gradient

3. Repeat until convergence

θ0 = 𝒩(0, μ)

lim
k→∞

θk = θ*

Convergence is guaranteed if cost function is convex. (and normally if it isn’t)

ℒ =
1
n

n

∑
i=1

li ≈
1

|ℐ | ∑
i∈ℐ

f(Xi ; θ) − Yi
2

2

(Stochastic) Gradient Descent

!14

Given training data: 𝒟n = {(X1, Y1), … , (Xn, Yn)}

Define a cost function:

Define neural network: f(X ; θ) ↦ Ŷ

Minimize cost function: θ* = argmin
θ

ℒ

Algorithm:

θk+1 = θk − λ∇θℒ

1. Initialize weights

2. Update based on gradient

3. Repeat until convergence

θ0 = 𝒩(0, μ)

lim
k→∞

θk = θ*

Convergence is guaranteed if cost function is convex. (and normally if it isn’t)

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

forward
evaluation

x1

Consider the computational graph for the simple function

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

forward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

forward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

forward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

forward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

∂f/∂θ2

forward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

∂f/∂x2 ∂f/∂θ2

forward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

∂f/∂x2 ∂f/∂θ2

backpropforward
evaluation

x1

Consider the computational graph for the simple function

Gradient calculation
through recursive uses of

the chain rule.

How do we get the gradient?

!15

f = max(θ1x1 + θ2x2, x3)

x3

θ1

x2 θ2×

+ max× f

∂f/∂x2 ∂f/∂θ2

backpropforward
evaluation

x1

Consider the computational graph for the simple function

Modern deep learning libraries implement NNs as computational graphs and provide
functions to compute their gradients analytically with respect to any node in the
graph, using back-propagation.

Gradient calculation
through recursive uses of

the chain rule.

So how do we learn equations?

!16

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

Approximate the solution of the PDE with an ANN (still untrained)

𝒩(x; θ) ↦ u

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

Approximate the solution of the PDE with an ANN (still untrained)

𝒩(x; θ) ↦ u

It turns out, that we can easily differentiate a neural network, and the derivative is
another network which shares the same parameters as the original. Remember
back-propagation!

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

Approximate the solution of the PDE with an ANN (still untrained)

𝒩(x; θ) ↦ u

It turns out, that we can easily differentiate a neural network, and the derivative is
another network which shares the same parameters as the original. Remember
back-propagation!

Replace the PDE with a neural network.

𝒢(x, 𝒩, ∇𝒩, ∇2𝒩, …; θ) = 0

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

Approximate the solution of the PDE with an ANN (still untrained)

𝒩(x; θ) ↦ u

It turns out, that we can easily differentiate a neural network, and the derivative is
another network which shares the same parameters as the original. Remember
back-propagation!

Replace the PDE with a neural network.

𝒢(x, 𝒩, ∇𝒩, ∇2𝒩, …; θ) = 0

Now we have an optimization problem that we know how to solve.

θ* = argmin
θ ∑

i∈𝒫

𝒢(xi, 𝒩, ∇𝒩, ∇2𝒩, …; θ) 2

2

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

Approximate the solution of the PDE with an ANN (still untrained)

𝒩(x; θ) ↦ u

It turns out, that we can easily differentiate a neural network, and the derivative is
another network which shares the same parameters as the original. Remember
back-propagation!

Replace the PDE with a neural network.

𝒢(x, 𝒩, ∇𝒩, ∇2𝒩, …; θ) = 0

Now we have an optimization problem that we know how to solve.

θ* = argmin
θ ∑

i∈𝒫

𝒢(xi, 𝒩, ∇𝒩, ∇2𝒩, …; θ) 2

2

Since the parameters are shared, solving this also gives us the solution network.

u(x) ≈ 𝒩(x; θ*)

So how do we learn equations?

!16

Consider the following general nonlinear PDE:

𝒢(x, u, ∇u, ∇2u, …) = 0,
u = u(x), x ∈ Ω

Approximate the solution of the PDE with an ANN (still untrained)

𝒩(x; θ) ↦ u

It turns out, that we can easily differentiate a neural network, and the derivative is
another network which shares the same parameters as the original. Remember
back-propagation!

Replace the PDE with a neural network.

𝒢(x, 𝒩, ∇𝒩, ∇2𝒩, …; θ) = 0

Now we have an optimization problem that we know how to solve.

θ* = argmin
θ ∑

i∈𝒫

𝒢(xi, 𝒩, ∇𝒩, ∇2𝒩, …; θ) 2

2

Since the parameters are shared, solving this also gives us the solution network.

u(x) ≈ 𝒩(x; θ*)

Plus boundary
conditions…

Boundary Conditions

!17

Ω

dΩ

𝔉[u(x)] = 0, x ∈ Ω

𝔊[u(x)] = g(x), x ∈ dΩ

2 approaches in general…

Boundary Conditions

!17

Ω

dΩ

𝔉[u(x)] = 0, x ∈ Ω

𝔊[u(x)] = g(x), x ∈ dΩ

2 approaches in general…

̂u(x) = 𝒩(x; θ)

ℒ(θ) = ∑
xi∈Ω

∥𝔉[𝒩(xi; θ)]∥2
2 + ∑

xj∈dΩ

∥𝔊[𝒩(xj; θ)] − g(xj)∥2
2

Constrained optimization

Boundary Conditions

!17

Ω

dΩ

𝔉[u(x)] = 0, x ∈ Ω

𝔊[u(x)] = g(x), x ∈ dΩ

2 approaches in general…

̂u(x) = A(x) + B(x)𝒩(x; θ), 𝔊[A(x)] = g(x), B(x) = 0, x ∈ dΩ

ℒ(θ) = ∑
xi∈Ω

∥𝔉[A(x) + B(x)𝒩(x; θ)]∥2
2

Unconstrained optimization

̂u(x) = 𝒩(x; θ)

ℒ(θ) = ∑
xi∈Ω

∥𝔉[𝒩(xi; θ)]∥2
2 + ∑

xj∈dΩ

∥𝔊[𝒩(xj; θ)] − g(xj)∥2
2

Constrained optimization

Discrete Time Methods

!18

Discrete Time Methods

!18

∂tu + 𝔉[u] = 0, (t, x) ∈ [0,T] × Ω ∈ ℝd

u(0,x) = g(x), x ∈ Ω,
u(t, x) = h(x), (t, x) ∈ [0,T] × dΩ

Consider an unsteady PDE of the form

Discrete Time Methods

!18

un+ci(x) = un(x) − Δt
q

∑
j=1

aij𝔉[un+cj(x)]

un+1(x) = un(x) − Δt
q

∑
j=1

bj𝔉[un+cj(x)]

General formula for Runge-Kutta time integration

∂tu + 𝔉[u] = 0, (t, x) ∈ [0,T] × Ω ∈ ℝd

u(0,x) = g(x), x ∈ Ω,
u(t, x) = h(x), (t, x) ∈ [0,T] × dΩ

Consider an unsteady PDE of the form

Discrete Time Methods

!18

un+ci(x) = un(x) − Δt
q

∑
j=1

aij𝔉[un+cj(x)]

un+1(x) = un(x) − Δt
q

∑
j=1

bj𝔉[un+cj(x)]

General formula for Runge-Kutta time integration

∂tu + 𝔉[u] = 0, (t, x) ∈ [0,T] × Ω ∈ ℝd

u(0,x) = g(x), x ∈ Ω,
u(t, x) = h(x), (t, x) ∈ [0,T] × dΩ

Consider an unsteady PDE of the form

Put a neural network prior on discrete solutions

[un+c1(x), …, un+cq(x), un+1(x)] = 𝒩(x; θ)

Discrete Time Methods

!18

un+ci(x) = un(x) − Δt
q

∑
j=1

aij𝔉[un+cj(x)]

un+1(x) = un(x) − Δt
q

∑
j=1

bj𝔉[un+cj(x)]

General formula for Runge-Kutta time integration

∂tu + 𝔉[u] = 0, (t, x) ∈ [0,T] × Ω ∈ ℝd

u(0,x) = g(x), x ∈ Ω,
u(t, x) = h(x), (t, x) ∈ [0,T] × dΩ

Consider an unsteady PDE of the form

Put a neural network prior on discrete solutions

[un+c1(x), …, un+cq(x), un+1(x)] = 𝒩(x; θ)

Inserting network into RK scheme yields desired minimization
problem based on known solution at time level n
Enables very high-order schemes!

Discrete Time Methods

!18

un+ci(x) = un(x) − Δt
q

∑
j=1

aij𝔉[un+cj(x)]

un+1(x) = un(x) − Δt
q

∑
j=1

bj𝔉[un+cj(x)]

General formula for Runge-Kutta time integration

∂tu + 𝔉[u] = 0, (t, x) ∈ [0,T] × Ω ∈ ℝd

u(0,x) = g(x), x ∈ Ω,
u(t, x) = h(x), (t, x) ∈ [0,T] × dΩ

Consider an unsteady PDE of the form

Put a neural network prior on discrete solutions

[un+c1(x), …, un+cq(x), un+1(x)] = 𝒩(x; θ)

Inserting network into RK scheme yields desired minimization
problem based on known solution at time level n
Enables very high-order schemes!
M. Raissi et al. arXiv:1711.10561v1, 2017.

0.0 0.2 0.4 0.6 0.8

t

�1.0

�0.5

0.0

0.5

1.0

x

u(t, x)

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

�1 0 1

x

�1.0

�0.5

0.0

0.5

1.0

u
(
t,

x
)

t = 0.10

Data

�1 0 1

x

�0.5

0.0

0.5

u
(
t,

x
)

t = 0.90

Exact Prediction

Figure 3: Burgers equation: Top: Solution u(t, x) along with the location of the initial

training snapshot at t = 0.1 and the final prediction snapshot at t = 0.9. Bottom: Initial

training data and final prediction at the snapshots depicted by the white vertical lines in

the top panel. The relative L2 error for this case is 8.2 · 10
�4

.

of that high-order has ever been used. Remarkably, starting from smooth
initial data at t = 0.1 we can predict the nearly discontinuous solution at
t = 0.9 in a single time-step with a relative L2 error of 8.2 ·10�4. This error is
two orders of magnitude lower that the one reported in [9], and it is entirely
attributed to the neural network’s capacity to approximate u(t, x), as well as
to the degree that the sum of squared errors loss allows interpolation of the
training data. The network architecture used here consists of 4 layers with
50 neurons in each hidden layer.

15

O(Δt1000)

!19

Proven on simple problems

*M. Raissi et al. arXiv:1711.10561v1, 2017.

Burgers equation with smooth opposing waves

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)

5

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

�1.0 �0.5 0.0 0.5 1.0
x

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

u

Continuous time, constrained
Domain Points 10000

Boundary Points 100
Optimizer Adam

Architecture 20x7

t = 0 0.25 0.5

0.75

DL Solution
Exact*

Probing for weakness on hyperbolic systems

!20

0

1

2

3

t

Shock

0

1

2

3

t

Expansion

0

1

2

3

t

Small Hat

�2 �1 0 1 2
x

0

1

u
0
(x

)

�2 �1 0 1 2
x

0

1

u
0
(x

)

�2 �1 0 1 2
x

0

1

u
0
(x

)

Entropic solution of inviscid Burgers equation

∂tu +
1
2

∂xu2 = ν∂xxu, u = u(t, x), t, x ∈ ℝ+ × ℝ, ν → 0

u(0,x) = u0(x)

Probing for weakness on hyperbolic systems

!20

0

1

2

3

t

Shock

0

1

2

3

t

Expansion

0

1

2

3

t

Small Hat

�2 �1 0 1 2
x

0

1

u
0
(x

)

�2 �1 0 1 2
x

0

1

u
0
(x

)

�2 �1 0 1 2
x

0

1

u
0
(x

)

Entropic solution of inviscid Burgers equation

∂tu +
1
2

∂xu2 = ν∂xxu, u = u(t, x), t, x ∈ ℝ+ × ℝ, ν → 0

u(0,x) = u0(x)

Representation of solutions with ANNs

!21

355 4010 15 20 25 30
Nodes per Layer

2
4
6
8

10
12
14
16
18
20

H
id

d
en

L
ay

er
s

3.7
5.0
5.4
5.7
5.9
5.8
5.9
5.5
5.8
5.8

4.3
5.5
5.7
5.9
6.0
6.2
6.4
6.1
5.8
5.9

4.4
5.6
5.7
6.0
6.3
6.0
6.4
6.0
5.9
6.1

4.3
5.6
5.7
6.0
5.9
6.0
6.0
5.7
5.4
6.1

4.3
5.3
5.7
5.9
6.1
5.7
6.0
5.2
5.7
5.9

4.2
5.4
5.7
6.2
5.9
6.0
6.0
5.7
5.1
5.9

4.4
5.7
5.7
6.1
5.9
6.0
5.7
5.6
5.6
5.7

4.1
5.8
5.9
5.9
6.0
5.8
6.0
5.5
5.6
6.0

�1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
S
ol

u
ti
on

(1
5x

14
)

4.0

4.5

5.0

5.5

6.0

�
lo

g 1
0
(l
os

s)

355 4010 15 20 25 30
Nodes per Layer

2
4
6
8

10
12
14
16
18
20

H
id

d
en

L
ay

er
s

2.9
4.7
4.9
6.9
7.8
7.0
6.1
6.9
7.4
4.7

3.0
4.6
6.6
6.0
5.3
6.3
5.0
4.5
4.6
5.5

3.2
5.3
5.1
5.5
5.8
5.7
5.0
5.3
5.2
4.6

3.2
4.7
6.0
5.7
4.8
5.1
4.3
4.7
4.4
4.4

3.2
5.9
5.0
4.7
5.3
4.8
4.4
4.9
5.4
5.1

3.3
5.1
5.8
5.1
4.3
4.7
4.5
4.4
4.3
5.2

3.4
5.1
4.5
5.0
4.8
4.3
4.4
4.8
3.9
4.5

3.4
6.5
6.0
4.8
5.0
4.3
4.3
4.6
4.4
4.6

�1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
S
ol

u
ti
on

(5
x1

0)

3

4

5

6

7

�
lo

g 1
0
(l
os

s)

355 4010 15 20 25 30
Nodes per Layer

2
4
6
8

10
12
14
16
18
20

H
id

d
en

L
ay

er
s

2.7
3.6
4.4
4.2
4.2
4.8
4.1
3.5
4.0
3.8

3.2
4.6
4.7
4.6
4.6
4.8
4.5
4.0
4.6
3.6

3.4
4.7
5.1
4.5
4.5
4.4
4.2
4.0
4.2
4.0

3.5
4.7
5.1
4.4
4.7
4.2
4.5
4.3
3.9
4.3

3.5
5.3
4.9
5.0
4.6
4.2
4.2
4.0
3.9
3.9

3.5
4.9
4.6
4.1
4.3
4.0
4.0
3.8
3.6
3.8

3.5
4.9
4.8
4.2
4.0
4.1
3.7
3.7
3.4
3.7

3.5
4.8
4.7
4.3
4.4
4.4
3.5
3.7
3.5
3.5

�1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
S
ol

u
ti
on

(2
5x

4)

3.0

3.5

4.0

4.5

5.0

�
lo

g 1
0
(l
os

s)

Parametric regression study with dense, feed-forward networks

Solutions with 7 hidden layers of 20 nodes

!22

0.00

0.25

0.50

0.75

1.00

S
h
oc

k
S
ol

u
ti
on

⌫ = 0 ⌫ = 0.001 ⌫ = 0.01

0.00

0.25

0.50

0.75

1.00

E
xp

an
si

on
S
ol

u
ti
on

�1 0 1 2 3 4
x

0.00

0.25

0.50

0.75

1.00

S
m

al
l
H

at
S
ol

u
ti
on

�1 0 1 2 3 4
x

�1 0 1 2 3 4
x

• 25 unique solutions
• 3 viscosities
• Solution envelopes

• Good generalization
outside of training
domain

• More accurate/
certain solution with
increasing viscosity

training
domain

extrapolated
solution

Projected loss surfaces provide a clue

!23

⌫ = 0

S
h
oc

k

⌫ = 0.001 ⌫ = 0.01

E
xp

an
si

on
S
m

al
l
H

at

Li, Xu, Taylor, Studer, Goldstein. arXiv:1712.09913 [cs.LG], 2018.

Treating viscosity as another dimension

!24

0.00

0.25

0.50

0.75

1.00

S
h
oc

k
S
ol

u
ti
on

⌫ = 0 ⌫ = 0.001 ⌫ = 0.01

0.00

0.25

0.50

0.75

1.00

E
xp

an
si

on
S
ol

u
ti
on

�1 0 1 2 3 4
x

0.00

0.25

0.50

0.75

1.00

S
m

al
l
H

at
S
ol

u
ti
on

�1 0 1 2 3 4
x

�1 0 1 2 3 4
x

• Better generalization
for low viscosity

• Smaller variance
• Closer to entropic

solution for inviscid
case

• Possible that network
expressibility
reached

training
domain

extrapolated
solution

Concluding Remarks

!25

Introduction to deep learning techniques for solving PDEs
• ANNs may help us overcome issues related to classical discretization schemes
• Break free from the curse of dimensionality
• Deep NNs have proven to be very successful at representing complex functions
• Inserting a NN in the PDE and BCs with colocation yields optimization problem
• Variety of ways to treat boundary conditions, time integration, sampling, …

Irregular/discontinuous solutions are difficult to train with current techniques
• Viscous Burgers equation is easier to solve with increasing viscosity (dissipation)
• Inviscid solutions have more variance and lower accuracy
• Generalizing the solution on a range of viscosities seems to improve the situation

Promising, but there is a lot of work left to be done!
• Next talks look at the approximation capacity of DNNs as well as an alternative

method based on LS-SVM, stick around!

James B. Scoggins
www.jbscoggins.com

@jb_scoggins

Solving Partial Differential Equations with Deep Learning

http://jbscoggins.com

