-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathtorchrun_main.py
570 lines (477 loc) · 23.1 KB
/
torchrun_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import os
import time
import json
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data
import torch.distributed as dist
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
from transformers import LlamaForCausalLM as HF_LlamaForCausalLM
import datasets
import datasets.distributed
import wandb
from tqdm import tqdm
from loguru import logger
from peft_pretraining import training_utils, args_utils
from peft_pretraining.dataloader import PreprocessedIterableDataset
from peft_pretraining.modeling_llama import LlamaForCausalLM
import bitsandbytes as bnb
from galore_torch import GaLoreAdamW, GaLoreAdamW8bit, GaLoreAdafactor
transformers.logging.set_verbosity_error()
def parse_args(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_config", type=str, required=True)
parser.add_argument("--use_hf_model", default=False, action="store_true")
parser.add_argument("--continue_from", type=str, default=None)
parser.add_argument("--batch_size", type=int, required=True)
parser.add_argument("--gradient_accumulation", type=int, default=None)
parser.add_argument("--total_batch_size", type=int, default=None)
parser.add_argument("--max_length", type=int, default=256)
parser.add_argument("--optimizer", default="Adam")
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--scheduler", type=str, default="cosine", choices=["linear", "cosine", "cosine_restarts"])
parser.add_argument("--min_lr_ratio", type=float, default=0.1)
parser.add_argument("--activation_checkpointing", action="store_true")
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--warmup_steps", type=int, default=1_000)
parser.add_argument("--eval_every", type=int, default=5_000)
parser.add_argument("--num_training_steps", type=int, default=10_000,
help="Number of **update steps** to train for. "
"Notice that gradient accumulation is taken into account.")
parser.add_argument("--max_train_tokens", type=training_utils.max_train_tokens_to_number, default=None,
help="Number of tokens to train on. Overwrites num_training_steps. "
"You can use M and B suffixes, e.g. 100M or 1B.")
parser.add_argument("--save_every", type=int, default=10_000)
parser.add_argument("--save_dir", type=str, default=None)
parser.add_argument("--tags", type=str, default=None)
parser.add_argument("--dtype", type=str, default="bfloat16" if torch.cuda.is_bf16_supported() else "float32")
parser.add_argument("--workers", type=int, default=8)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--name", type=str, default="test")
parser.add_argument("--grad_clipping", type=float, default=0.0)
# beta1 for adafactor
parser.add_argument("--beta1", type=float, default=0.0)
# GaLore parameters
parser.add_argument("--rank", type=int, default=128)
parser.add_argument("--update_proj_gap", type=int, default=50)
parser.add_argument("--galore_scale", type=float, default=1.0)
parser.add_argument("--proj_type", type=str, default="std")
# disable ddp, single_gpu
parser.add_argument("--single_gpu", default=False, action="store_true")
args = parser.parse_args(args)
args = args_utils.check_args_torchrun_main(args)
return args
@torch.no_grad()
def evaluate_model(model, preprocess_batched, pad_idx, global_rank, world_size, device, batch_size):
_time = time.time()
val_data = datasets.load_dataset("c4", "en", split="validation", streaming=True) #DGX
val_data = val_data.shuffle(seed=42)
logger.info(f"Loaded validation dataset in {time.time() - _time:.2f} seconds")
if not args.single_gpu:
val_data = datasets.distributed.split_dataset_by_node(val_data, rank=global_rank, world_size=world_size)
val_data_mapped = val_data.map(
preprocess_batched,
batched=True,
remove_columns=["text", "timestamp", "url"],
)
val_data_mapped.batch = lambda batch_size: training_utils.batch_fn(val_data_mapped, batch_size)
target_eval_tokens = 10_000_000
evaluated_on_tokens = 0
total_loss = torch.tensor(0.0).to(device)
total_batches = 1
logger.info(f"Eval set prepared in {time.time() - _time:.2f} seconds")
for batch in val_data_mapped.batch(batch_size=batch_size):
if evaluated_on_tokens > target_eval_tokens:
break
total_batches += 1
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch["input_ids"].clone()
labels[labels == pad_idx] = -100
loss = model(**batch, labels=labels).loss
total_loss += loss.detach()
evaluated_on_tokens += (batch["input_ids"] != pad_idx).sum().item() * world_size
total_loss = total_loss / total_batches
# Gather losses across all GPUs
gathered_losses = [torch.zeros_like(total_loss) for _ in range(world_size)]
dist.all_gather(gathered_losses, total_loss)
total_loss = sum([t.item() for t in gathered_losses]) / world_size
return total_loss, evaluated_on_tokens
def main(args):
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
assert "LOCAL_RANK" in os.environ, "torchrun should set LOCAL_RANK"
global_rank = int(os.environ['RANK'])
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
torch.cuda.set_device(local_rank)
logger.info(f"Global rank {global_rank}, local rank {local_rank}, device: {torch.cuda.current_device()}")
dist.init_process_group(backend="nccl", rank=global_rank, world_size=world_size)
logger.info("Process group initialized")
device = f"cuda:{local_rank}"
if args.total_batch_size is not None:
if args.gradient_accumulation is None:
assert args.total_batch_size % world_size == 0, "total_batch_size must be divisible by world_size"
args.gradient_accumulation = args.total_batch_size // (args.batch_size * world_size)
assert args.gradient_accumulation > 0, "gradient_accumulation must be greater than 0"
assert args.gradient_accumulation * args.batch_size * world_size == args.total_batch_size, \
"gradient_accumulation * batch_size * world_size must be equal to total_batch_size"
# turn off logger
if global_rank != 0: logger.remove()
# initialize wandb without config (it is passed later)
if global_rank == 0:
wandb.init(project="galore-c4")
logger.info(f"Using dist with rank {global_rank} (only rank 0 will log)")
logger.info("*" * 40)
logger.info(f"Starting training with the arguments")
for k, v in vars(args).items():
logger.info(f"{k:30} {v}")
logger.info("*" * 40)
data = datasets.load_dataset("c4", "en", split="train", streaming=True)
seed_for_shuffle = 42
logger.info(f"Shuffling data with seed {seed_for_shuffle}")
data: datasets.Dataset = data.shuffle(seed=seed_for_shuffle)
if not args.single_gpu:
data = datasets.distributed.split_dataset_by_node(
data, rank=global_rank, world_size=world_size,
)
# it doesn't matter which tokenizer we use, because we train from scratch
# T5 tokenizer was trained on C4 and we are also training on C4, so it's a good choice
tokenizer = AutoTokenizer.from_pretrained("t5-base", model_max_length=args.max_length)
def preprocess_batched(batch):
batch = tokenizer(
batch["text"],
max_length=args.max_length,
truncation=True,
padding="max_length",
return_tensors="pt",
)
return batch
dataset = PreprocessedIterableDataset(data, tokenizer, batch_size=args.batch_size, max_length=args.max_length)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=args.workers)
model_config = AutoConfig.from_pretrained(args.model_config)
if args.use_hf_model:
model: HF_LlamaForCausalLM = AutoModelForCausalLM.from_config(model_config)
else:
model = LlamaForCausalLM(model_config)
if args.activation_checkpointing:
model.gradient_checkpointing_enable()
global_step = 0
update_step = 0
beginning_step = 0
tokens_seen = 0
tokens_seen_before = 0
if args.continue_from is not None:
logger.info("*" * 40)
logger.info(f"Loading model from {args.continue_from}")
checkpoint_path = os.path.join(args.continue_from, "pytorch_model.bin")
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu"), strict=True)
logger.info(f"Model successfully loaded (strict=True policy)")
if os.path.exists(os.path.join(args.continue_from, "training_state.json")):
logger.info(f"Loading training state like global_step, update_step, and tokens_seen from {args.continue_from}")
with open(os.path.join(args.continue_from, "training_state.json")) as f:
_old_state = json.load(f)
global_step = _old_state["global_step"]
update_step = _old_state["update_step"]
tokens_seen = _old_state["tokens_seen"]
tokens_seen_before = _old_state["tokens_seen_before"]
logger.info(f"global_step : {global_step}")
logger.info(f"update_step : {update_step}")
logger.info(f"tokens_seen : {tokens_seen}")
logger.info(f"tokens_seen_before: {tokens_seen_before}")
logger.info(f"Will train for {args.num_training_steps - update_step} update steps")
else:
logger.warning(f"Did not find training state in {args.continue_from}, global step will start from zero")
logger.info("*" * 40)
if args.dtype in ["bf16", "bfloat16"]:
model = model.to(device=device, dtype=torch.bfloat16)
else:
model = model.to(device=device)
n_total_params = sum(p.numel() for p in model.parameters())
trainable_params = [p for p in model.parameters() if p.requires_grad]
# Initialize wandb
run_config = dict(vars(args))
run_config.update({
"max_lr": run_config.pop("lr"), # rename lr to max_lr to avoid conflicts with scheduler
"total_params_M": n_total_params / 1_000_000,
"dataset": 'c4',
"model": model_config.to_dict(),
"world_size": world_size,
"device": str(device),
})
if global_rank == 0:
wandb.config.update(run_config, allow_val_change=True)
wandb.save(os.path.abspath(__file__), policy="now") # save current script
# fix tqdm visual length to 80 so that the progress bar
# doesn't jump around when changing from external display to laptop
pbar = tqdm(total=args.num_training_steps - update_step, desc="Update steps", ncols=80)
if 'galore' in args.optimizer.lower():
# make parameters with "rank" to a single group, if param_name has "mlp" or "attn"
galore_params = []
target_modules_list = ["attn", "mlp"]
for module_name, module in model.named_modules():
if not isinstance(module, nn.Linear):
continue
if not any(target_key in module_name for target_key in target_modules_list):
continue
print('enable GaLore for weights in module: ', module_name)
galore_params.append(module.weight)
id_galore_params = [id(p) for p in galore_params]
# make parameters without "rank" to another group
regular_params = [p for p in model.parameters() if id(p) not in id_galore_params]
# then call galore_adamw
param_groups = [{'params': regular_params},
{'params': galore_params, 'rank': args.rank, 'update_proj_gap': args.update_proj_gap, 'scale': args.galore_scale, 'proj_type': args.proj_type}]
# print params and trainable params
logger.info(f"\n{model}\n")
logger.info(f"Total params: {sum(p.numel() for p in model.parameters()) / 1_000_000:.2f}M")
logger.info(f"Trainable params: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000:.2f}M")
logger.info(f"Total params with GaLore enabled: {sum(p.numel() for p in galore_params) / 1_000_000:.2f}M")
logger.info(f"Saving model to {args.save_dir} every {args.save_every} update steps")
layer_wise_flag = False
if args.optimizer.lower() == "adam":
optimizer = torch.optim.Adam(trainable_params, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer.lower() == "galore_adamw":
# redefine way to call galore_adamw
optimizer = GaLoreAdamW(param_groups, lr=args.lr, weight_decay=args.weight_decay)
# implement sgd
elif args.optimizer.lower() == "sgd":
optimizer = torch.optim.SGD(trainable_params, lr=args.lr, weight_decay=args.weight_decay, momentum=args.beta1)
# implement adafactor
elif args.optimizer.lower() == "adafactor":
args.beta1 = None if args.beta1 == 0.0 else args.beta1
optimizer = transformers.optimization.Adafactor(
trainable_params,
lr=args.lr,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=args.beta1,
weight_decay=args.weight_decay,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
# low-rank adafactor
elif args.optimizer.lower() == "galore_adafactor":
args.beta1 = None if args.beta1 == 0.0 else args.beta1
optimizer = GaLoreAdafactor(
param_groups,
lr=args.lr,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=args.beta1,
weight_decay=args.weight_decay,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
# 8-bit Adam
elif args.optimizer.lower() == "adam8bit":
optimizer = bnb.optim.Adam8bit(trainable_params, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer.lower() == "galore_adamw8bit":
optimizer = GaLoreAdamW8bit(param_groups, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer.lower() == 'galore_adamw8bit_per_layer':
# TODO: seems scheduler call twice in one update step, need to check, for now double the num_training_steps, warmup_steps and update_proj_gap
optimizer_dict = {}
for p in model.parameters():
if p.requires_grad:
if id(p) in id_galore_params:
optimizer_dict[p] = GaLoreAdamW8bit([{'params': [p], 'rank': args.rank, 'update_proj_gap': args.update_proj_gap * 2, 'scale': args.galore_scale, 'proj_type': args.proj_type}], lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer_dict[p] = bnb.optim.Adam8bit([p], lr=args.lr, weight_decay=args.weight_decay)
# get scheduler dict
scheduler_dict = {}
for p in model.parameters():
if p.requires_grad:
scheduler_dict[p] = training_utils.get_scheculer(
optimizer=optimizer_dict[p],
scheduler_type=args.scheduler,
num_training_steps=args.num_training_steps * 2,
warmup_steps=args.warmup_steps * 2,
min_lr_ratio=args.min_lr_ratio,
)
def optimizer_hook(p):
if p.grad is None:
return
optimizer_dict[p].step()
optimizer_dict[p].zero_grad()
scheduler_dict[p].step()
# Register the hook onto every parameter
for p in model.parameters():
if p.requires_grad:
p.register_post_accumulate_grad_hook(optimizer_hook)
layer_wise_flag = True
else:
raise ValueError(f"Optimizer {args.optimizer} not supported")
if not layer_wise_flag:
scheduler = training_utils.get_scheculer(
optimizer=optimizer,
scheduler_type=args.scheduler,
num_training_steps=args.num_training_steps,
warmup_steps=args.warmup_steps,
min_lr_ratio=args.min_lr_ratio,
)
if not args.single_gpu:
model: LlamaForCausalLM = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[local_rank],
output_device=local_rank,
broadcast_buffers=False,
)
# global steps and others are defined above
pad_idx = tokenizer.pad_token_id
update_time = time.time()
local_step = 0 # when continue_from is used, local_step != global_step
# ##############################
# TRAINING LOOP
# we'll never go through all the data, so no need for epochs
# ##############################
for batch_idx, batch in enumerate(dataloader):
global_step += 1
local_step += 1
if update_step > args.num_training_steps:
logger.info(f"Reached max number of update steps (f{args.num_training_steps}). Stopping training.")
print(f"Rank {global_rank} stopping training.")
break
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch["input_ids"].clone()
labels[labels == pad_idx] = -100
tokens_seen += (batch["input_ids"] != pad_idx).sum().item() * world_size
loss = model(**batch, labels=labels).loss
scaled_loss = loss / args.gradient_accumulation
scaled_loss.backward()
if global_step % args.gradient_accumulation != 0:
continue
# The below code is only executed during the update step
# add grad clipping
if args.grad_clipping != 0.0: torch.nn.utils.clip_grad_norm_(trainable_params, args.grad_clipping)
if global_rank == 0: pbar.update(1)
if not layer_wise_flag:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
update_step += 1
update_time = time.time() - update_time
# save checkpoint by save_every
if local_step > args.gradient_accumulation and update_step % args.save_every == 0 and global_rank == 0:
current_model_directory = f"{args.save_dir}/model_{update_step}"
logger.info(f"Saving model and optimizer to {current_model_directory}, update step {update_step}")
os.makedirs(args.save_dir, exist_ok=True)
model.module.save_pretrained(current_model_directory, max_shard_size='100GB')
optimizer_checkpoint = {
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"update_step": update_step,
"global_step": global_step,
"config": run_config,
"wandb": wandb.run.dir,
"dtype": args.dtype,
}
torch.save(optimizer_checkpoint, f"{current_model_directory}/optimizer.pt")
training_state_checkpoint = {
"global_step": global_step,
"update_step": update_step,
"tokens_seen": tokens_seen,
"tokens_seen_before": tokens_seen_before,
"update_time": update_time,
}
with open(f"{current_model_directory}/training_state.json", "w") as f:
json.dump(training_state_checkpoint, f, indent=4)
# save wandb related info
wandb_info = {
"wandb_id": wandb.run.id,
}
with open(f"{args.save_dir}/wandb.json", "w") as f:
json.dump(wandb_info, f, indent=4)
# evaluation
if update_step % args.eval_every == 0:
logger.info(f"Performing evaluation at step {update_step}")
total_loss, evaluated_on_tokens = evaluate_model(
model, preprocess_batched, pad_idx, global_rank, world_size, device, args.batch_size
)
if global_rank == 0:
wandb.log({
"final_eval_loss": total_loss,
"final_eval_tokens": evaluated_on_tokens,
},
step=global_step,
)
logger.info(f"Eval loss at step {update_step}: {total_loss}")
if not layer_wise_flag:
lr = optimizer.param_groups[0]["lr"]
else:
lr = list(optimizer_dict.values())[0].param_groups[0]["lr"]
tokens_in_update = tokens_seen - tokens_seen_before
tokens_seen_before = tokens_seen
batches_in_update = args.gradient_accumulation * world_size
if global_rank == 0:
wandb.log({
"loss": loss.item(),
"lr": lr,
"update_step": update_step,
"tokens_seen": tokens_seen,
"throughput_tokens": tokens_in_update / update_time,
"throughput_examples": args.total_batch_size / update_time,
"throughput_batches": batches_in_update / update_time,
},
step=global_step,
)
update_time = time.time()
# ##############################
# END of training loop
# ##############################
logger.info("Training finished")
if global_rank == 0: pbar.close()
current_model_directory = f"{args.save_dir}/model_{update_step}"
if global_rank == 0 and not os.path.exists(current_model_directory):
logger.info(f"Saving model and optimizer to {current_model_directory}, update step {update_step}")
os.makedirs(args.save_dir, exist_ok=True)
model.module.save_pretrained(current_model_directory)
optimizer_checkpoint = {
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"update_step": update_step,
"global_step": global_step,
"config": run_config,
"wandb": wandb.run.dir,
"dtype": args.dtype,
}
torch.save(optimizer_checkpoint, f"{current_model_directory}/optimizer.pt")
training_state_checkpoint = {
"global_step": global_step,
"update_step": update_step,
"tokens_seen": tokens_seen,
"tokens_seen_before": tokens_seen_before,
"update_time": update_time,
}
with open(f"{current_model_directory}/training_state.json", "w") as f:
json.dump(training_state_checkpoint, f, indent=4)
# Final evaluation
logger.info("Running final evaluation")
model.eval()
del loss, optimizer, scheduler
import gc; gc.collect()
torch.cuda.empty_cache()
total_loss, evaluated_on_tokens = evaluate_model(
model, preprocess_batched, pad_idx, global_rank, world_size, device, args.batch_size
)
if global_rank == 0:
wandb.log({
"final_eval_loss": total_loss,
"final_eval_tokens": evaluated_on_tokens,
},
step=global_step,
)
logger.info(f"Final eval loss: {total_loss}")
logger.info("Script finished successfully")
print(f"Rank {global_rank} finished successfully")
if __name__ == "__main__":
print("Starting script")
args = parse_args(None)
main(args)