# Experiment exp_name = 'nelf_ft_direct' exp_path = f'data_results/{exp_name}' vis_path = f'{exp_path}/vis' ckpt_path = f'{exp_path}/ckpt' val_path = f'{exp_path}/validation' # Visualization vis_data_id = 0 vis_source_image_id = [0, 1, 2] vis_target_image_ids = [0, 1, 2] # Model model_name = 'nelf_ft_direct' model_args = { 'coarse_sample_num': 64, 'fine_sample_num': 128, 'train_ray_per_gpu': 256, 'test_ray_per_gpu': 640, 'train_mask_ratio': 0.75, 'head_diameter': 200, # mm 'light_size': (8, 16), } # Dataset data_path = 'data/blender_both' bad_data_names = ['sub148'] val_data_names = ['sub122', 'sub212', 'sub340', 'sub344'] train_data_names = [ f'sub{i:03d}' for i in range(1, 360) if f'sub{i:03d}' not in val_data_names and f'sub{i:03d}' not in bad_data_names ] # val_data_names = ['sub001'] # train_data_names = [f'sub{i:03d}' for i in range(2, 10) ] data_categories = ['source_image', 'target_image', 'target_image_rotation'] light_ext = '' rotate_ratio = 0.3 batch_per_gpu = None # Training mlp_lr = 1e-4 image_encoder_lr = 2e-4 train_step = 500000 prompt_interval = 10 vis_interval = 10000 val_interval = 20000 ckpt_interval = 50000 # Pretrain use_pretrain = False pretrain_step = 0