tqdm
opencv-python
easydict
pycocotools
gluoncv
mxnet
Example command:
PYTHONPATH=. /data2/zyx/yks/anaconda3/bin/python3 /data3/zyx/yks/mx-openpose/scripts/train_gluon_cpm.py \
--dataset-root=/data3/zyx/yks/dataset/coco2017 --gpus=7,8 --disable-fusion --backbone=res50
you may want to change dataset root and gpus by yourself.
After you have trained your own model or download the pretrained model, you can use scripts/evaluate.py
to evaluate the model.
Example command:
PYTHONPATH=. /data2/zyx/yks/anaconda3/bin/python3 /data3/zyx/yks/mx-openpose/scripts/evaluate.py \
--resume=pretrained/resnet50-cpm-resnet-cropped-flipped_rotated-47-0.0.params \
--dataset-root="/data3/zyx/yks/dataset/coco2017" \
--gpus="0" --stage=0 --viz
Also, you may want to change resume, dataset root and gpus by yourself.
Example Results of our implementation:
Our implementation(Dilated-Resnet50 as backbone, 21 epochs):
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.561
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.788
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.610
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.544
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.596
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.600
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.803
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.641
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.555
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.666
mAP of the original model(converted from caffe), the score is higher than the paper reported because val dataset does not match.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.590
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.810
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.643
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.575
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.623
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.630
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.824
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.675
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.582
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.699
mAP of the original model (re-train) 38 epochs.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.560
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.788
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.601
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.554
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.582
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.598
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.801
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.638
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.563
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.653
If initialize parameters with Xavier.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.564
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.787
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.610
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.555
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.588
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.601
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.800
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.641
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.564
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.658
The original pretrained model converted from Caffe can be downloaded from https://drive.google.com/drive/folders/0BzffphMuhDDMV0RZVGhtQWlmS1U, which is bought from mxnet_Realtime_Multi-Person_Pose_Estimation by @dragonfly90.
.
You can download pretrained models of VGG19 trained on imagenet converted from caffe and VGG19 trained on COCO train2017 from https://drive.google.com/drive/folders/1l5SOCr0P5w3-HxetQ1W0HmSgSyrmK0ha?usp=sharing.