-
Notifications
You must be signed in to change notification settings - Fork 391
/
models.py
974 lines (866 loc) · 40.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
from . import graph
import tensorflow as tf
import sklearn
import scipy.sparse
import numpy as np
import os, time, collections, shutil
#NFEATURES = 28**2
#NCLASSES = 10
# Common methods for all models
class base_model(object):
def __init__(self):
self.regularizers = []
# High-level interface which runs the constructed computational graph.
def predict(self, data, labels=None, sess=None):
loss = 0
size = data.shape[0]
predictions = np.empty(size)
sess = self._get_session(sess)
for begin in range(0, size, self.batch_size):
end = begin + self.batch_size
end = min([end, size])
batch_data = np.zeros((self.batch_size, data.shape[1]))
tmp_data = data[begin:end,:]
if type(tmp_data) is not np.ndarray:
tmp_data = tmp_data.toarray() # convert sparse matrices
batch_data[:end-begin] = tmp_data
feed_dict = {self.ph_data: batch_data, self.ph_dropout: 1}
# Compute loss if labels are given.
if labels is not None:
batch_labels = np.zeros(self.batch_size)
batch_labels[:end-begin] = labels[begin:end]
feed_dict[self.ph_labels] = batch_labels
batch_pred, batch_loss = sess.run([self.op_prediction, self.op_loss], feed_dict)
loss += batch_loss
else:
batch_pred = sess.run(self.op_prediction, feed_dict)
predictions[begin:end] = batch_pred[:end-begin]
if labels is not None:
return predictions, loss * self.batch_size / size
else:
return predictions
def evaluate(self, data, labels, sess=None):
"""
Runs one evaluation against the full epoch of data.
Return the precision and the number of correct predictions.
Batch evaluation saves memory and enables this to run on smaller GPUs.
sess: the session in which the model has been trained.
op: the Tensor that returns the number of correct predictions.
data: size N x M
N: number of signals (samples)
M: number of vertices (features)
labels: size N
N: number of signals (samples)
"""
t_process, t_wall = time.process_time(), time.time()
predictions, loss = self.predict(data, labels, sess)
#print(predictions)
ncorrects = sum(predictions == labels)
accuracy = 100 * sklearn.metrics.accuracy_score(labels, predictions)
f1 = 100 * sklearn.metrics.f1_score(labels, predictions, average='weighted')
string = 'accuracy: {:.2f} ({:d} / {:d}), f1 (weighted): {:.2f}, loss: {:.2e}'.format(
accuracy, ncorrects, len(labels), f1, loss)
if sess is None:
string += '\ntime: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall)
return string, accuracy, f1, loss
def fit(self, train_data, train_labels, val_data, val_labels):
t_process, t_wall = time.process_time(), time.time()
sess = tf.Session(graph=self.graph)
shutil.rmtree(self._get_path('summaries'), ignore_errors=True)
writer = tf.summary.FileWriter(self._get_path('summaries'), self.graph)
shutil.rmtree(self._get_path('checkpoints'), ignore_errors=True)
os.makedirs(self._get_path('checkpoints'))
path = os.path.join(self._get_path('checkpoints'), 'model')
sess.run(self.op_init)
# Training.
accuracies = []
losses = []
indices = collections.deque()
num_steps = int(self.num_epochs * train_data.shape[0] / self.batch_size)
for step in range(1, num_steps+1):
# Be sure to have used all the samples before using one a second time.
if len(indices) < self.batch_size:
indices.extend(np.random.permutation(train_data.shape[0]))
idx = [indices.popleft() for i in range(self.batch_size)]
batch_data, batch_labels = train_data[idx,:], train_labels[idx]
if type(batch_data) is not np.ndarray:
batch_data = batch_data.toarray() # convert sparse matrices
feed_dict = {self.ph_data: batch_data, self.ph_labels: batch_labels, self.ph_dropout: self.dropout}
learning_rate, loss_average = sess.run([self.op_train, self.op_loss_average], feed_dict)
# Periodical evaluation of the model.
if step % self.eval_frequency == 0 or step == num_steps:
epoch = step * self.batch_size / train_data.shape[0]
print('step {} / {} (epoch {:.2f} / {}):'.format(step, num_steps, epoch, self.num_epochs))
print(' learning_rate = {:.2e}, loss_average = {:.2e}'.format(learning_rate, loss_average))
string, accuracy, f1, loss = self.evaluate(val_data, val_labels, sess)
accuracies.append(accuracy)
losses.append(loss)
print(' validation {}'.format(string))
print(' time: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall))
# Summaries for TensorBoard.
summary = tf.Summary()
summary.ParseFromString(sess.run(self.op_summary, feed_dict))
summary.value.add(tag='validation/accuracy', simple_value=accuracy)
summary.value.add(tag='validation/f1', simple_value=f1)
summary.value.add(tag='validation/loss', simple_value=loss)
writer.add_summary(summary, step)
# Save model parameters (for evaluation).
self.op_saver.save(sess, path, global_step=step)
print('validation accuracy: peak = {:.2f}, mean = {:.2f}'.format(max(accuracies), np.mean(accuracies[-10:])))
writer.close()
sess.close()
t_step = (time.time() - t_wall) / num_steps
return accuracies, losses, t_step
def get_var(self, name):
sess = self._get_session()
var = self.graph.get_tensor_by_name(name + ':0')
val = sess.run(var)
sess.close()
return val
# Methods to construct the computational graph.
def build_graph(self, M_0):
"""Build the computational graph of the model."""
self.graph = tf.Graph()
with self.graph.as_default():
# Inputs.
with tf.name_scope('inputs'):
self.ph_data = tf.placeholder(tf.float32, (self.batch_size, M_0), 'data')
self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels')
self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout')
# Model.
op_logits = self.inference(self.ph_data, self.ph_dropout)
self.op_loss, self.op_loss_average = self.loss(op_logits, self.ph_labels, self.regularization)
self.op_train = self.training(self.op_loss, self.learning_rate,
self.decay_steps, self.decay_rate, self.momentum)
self.op_prediction = self.prediction(op_logits)
# Initialize variables, i.e. weights and biases.
self.op_init = tf.global_variables_initializer()
# Summaries for TensorBoard and Save for model parameters.
self.op_summary = tf.summary.merge_all()
self.op_saver = tf.train.Saver(max_to_keep=5)
self.graph.finalize()
def inference(self, data, dropout):
"""
It builds the model, i.e. the computational graph, as far as
is required for running the network forward to make predictions,
i.e. return logits given raw data.
data: size N x M
N: number of signals (samples)
M: number of vertices (features)
training: we may want to discriminate the two, e.g. for dropout.
True: the model is built for training.
False: the model is built for evaluation.
"""
# TODO: optimizations for sparse data
logits = self._inference(data, dropout)
return logits
def probabilities(self, logits):
"""Return the probability of a sample to belong to each class."""
with tf.name_scope('probabilities'):
probabilities = tf.nn.softmax(logits)
return probabilities
def prediction(self, logits):
"""Return the predicted classes."""
with tf.name_scope('prediction'):
prediction = tf.argmax(logits, axis=1)
return prediction
def loss(self, logits, labels, regularization):
"""Adds to the inference model the layers required to generate loss."""
with tf.name_scope('loss'):
with tf.name_scope('cross_entropy'):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('regularization'):
regularization *= tf.add_n(self.regularizers)
loss = cross_entropy + regularization
# Summaries for TensorBoard.
tf.summary.scalar('loss/cross_entropy', cross_entropy)
tf.summary.scalar('loss/regularization', regularization)
tf.summary.scalar('loss/total', loss)
with tf.name_scope('averages'):
averages = tf.train.ExponentialMovingAverage(0.9)
op_averages = averages.apply([cross_entropy, regularization, loss])
tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy))
tf.summary.scalar('loss/avg/regularization', averages.average(regularization))
tf.summary.scalar('loss/avg/total', averages.average(loss))
with tf.control_dependencies([op_averages]):
loss_average = tf.identity(averages.average(loss), name='control')
return loss, loss_average
def training(self, loss, learning_rate, decay_steps, decay_rate=0.95, momentum=0.9):
"""Adds to the loss model the Ops required to generate and apply gradients."""
with tf.name_scope('training'):
# Learning rate.
global_step = tf.Variable(0, name='global_step', trainable=False)
if decay_rate != 1:
learning_rate = tf.train.exponential_decay(
learning_rate, global_step, decay_steps, decay_rate, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
# Optimizer.
if momentum == 0:
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
#optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
else:
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
grads = optimizer.compute_gradients(loss)
op_gradients = optimizer.apply_gradients(grads, global_step=global_step)
# Histograms.
for grad, var in grads:
if grad is None:
print('warning: {} has no gradient'.format(var.op.name))
else:
tf.summary.histogram(var.op.name + '/gradients', grad)
# The op return the learning rate.
with tf.control_dependencies([op_gradients]):
op_train = tf.identity(learning_rate, name='control')
return op_train
# Helper methods.
def _get_path(self, folder):
path = os.path.dirname(os.path.realpath(__file__))
return os.path.join(path, '..', folder, self.dir_name)
def _get_session(self, sess=None):
"""Restore parameters if no session given."""
if sess is None:
sess = tf.Session(graph=self.graph)
filename = tf.train.latest_checkpoint(self._get_path('checkpoints'))
self.op_saver.restore(sess, filename)
return sess
def _weight_variable(self, shape, regularization=True):
initial = tf.truncated_normal_initializer(0, 0.1)
var = tf.get_variable('weights', shape, tf.float32, initializer=initial)
if regularization:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def _bias_variable(self, shape, regularization=True):
initial = tf.constant_initializer(0.1)
var = tf.get_variable('bias', shape, tf.float32, initializer=initial)
if regularization:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def _conv2d(self, x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# Fully connected
class fc1(base_model):
def __init__(self):
super().__init__()
def _inference(self, x, dropout):
W = self._weight_variable([NFEATURES, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.matmul(x, W) + b
return y
class fc2(base_model):
def __init__(self, nhiddens):
super().__init__()
self.nhiddens = nhiddens
def _inference(self, x, dropout):
with tf.name_scope('fc1'):
W = self._weight_variable([NFEATURES, self.nhiddens])
b = self._bias_variable([self.nhiddens])
y = tf.nn.relu(tf.matmul(x, W) + b)
with tf.name_scope('fc2'):
W = self._weight_variable([self.nhiddens, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.matmul(y, W) + b
return y
# Convolutional
class cnn2(base_model):
"""Simple convolutional model."""
def __init__(self, K, F):
super().__init__()
self.K = K # Patch size
self.F = F # Number of features
def _inference(self, x, dropout):
with tf.name_scope('conv1'):
W = self._weight_variable([self.K, self.K, 1, self.F])
b = self._bias_variable([self.F])
# b = self._bias_variable([1, 28, 28, self.F])
x_2d = tf.reshape(x, [-1,28,28,1])
y_2d = self._conv2d(x_2d, W) + b
y_2d = tf.nn.relu(y_2d)
with tf.name_scope('fc1'):
y = tf.reshape(y_2d, [-1, NFEATURES*self.F])
W = self._weight_variable([NFEATURES*self.F, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.matmul(y, W) + b
return y
class fcnn2(base_model):
"""CNN using the FFT."""
def __init__(self, F):
super().__init__()
self.F = F # Number of features
def _inference(self, x, dropout):
with tf.name_scope('conv1'):
# Transform to Fourier domain
x_2d = tf.reshape(x, [-1, 28, 28])
x_2d = tf.complex(x_2d, 0)
xf_2d = tf.fft2d(x_2d)
xf = tf.reshape(xf_2d, [-1, NFEATURES])
xf = tf.expand_dims(xf, 1) # NSAMPLES x 1 x NFEATURES
xf = tf.transpose(xf) # NFEATURES x 1 x NSAMPLES
# Filter
Wreal = self._weight_variable([int(NFEATURES/2), self.F, 1])
Wimg = self._weight_variable([int(NFEATURES/2), self.F, 1])
W = tf.complex(Wreal, Wimg)
xf = xf[:int(NFEATURES/2), :, :]
yf = tf.matmul(W, xf) # for each feature
yf = tf.concat([yf, tf.conj(yf)], axis=0)
yf = tf.transpose(yf) # NSAMPLES x NFILTERS x NFEATURES
yf_2d = tf.reshape(yf, [-1, 28, 28])
# Transform back to spatial domain
y_2d = tf.ifft2d(yf_2d)
y_2d = tf.real(y_2d)
y = tf.reshape(y_2d, [-1, self.F, NFEATURES])
# Bias and non-linearity
b = self._bias_variable([1, self.F, 1])
# b = self._bias_variable([1, self.F, NFEATURES])
y += b # NSAMPLES x NFILTERS x NFEATURES
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*NFEATURES, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*NFEATURES])
y = tf.matmul(y, W) + b
return y
# Graph convolutional
class fgcnn2(base_model):
"""Graph CNN with full weights, i.e. patch has the same size as input."""
def __init__(self, L, F):
super().__init__()
#self.L = L # Graph Laplacian, NFEATURES x NFEATURES
self.F = F # Number of filters
_, self.U = graph.fourier(L)
def _inference(self, x, dropout):
# x: NSAMPLES x NFEATURES
with tf.name_scope('gconv1'):
# Transform to Fourier domain
U = tf.constant(self.U, dtype=tf.float32)
xf = tf.matmul(x, U)
xf = tf.expand_dims(xf, 1) # NSAMPLES x 1 x NFEATURES
xf = tf.transpose(xf) # NFEATURES x 1 x NSAMPLES
# Filter
W = self._weight_variable([NFEATURES, self.F, 1])
yf = tf.matmul(W, xf) # for each feature
yf = tf.transpose(yf) # NSAMPLES x NFILTERS x NFEATURES
yf = tf.reshape(yf, [-1, NFEATURES])
# Transform back to graph domain
Ut = tf.transpose(U)
y = tf.matmul(yf, Ut)
y = tf.reshape(yf, [-1, self.F, NFEATURES])
# Bias and non-linearity
b = self._bias_variable([1, self.F, 1])
# b = self._bias_variable([1, self.F, NFEATURES])
y += b # NSAMPLES x NFILTERS x NFEATURES
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*NFEATURES, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*NFEATURES])
y = tf.matmul(y, W) + b
return y
class lgcnn2_1(base_model):
"""Graph CNN which uses the Lanczos approximation."""
def __init__(self, L, F, K):
super().__init__()
self.L = L # Graph Laplacian, M x M
self.F = F # Number of filters
self.K = K # Polynomial order, i.e. filter size (number of hopes)
def _inference(self, x, dropout):
with tf.name_scope('gconv1'):
N, M, K = x.get_shape() # N: number of samples, M: number of features
M = int(M)
# Transform to Lanczos basis
xl = tf.reshape(x, [-1, self.K]) # NM x K
# Filter
W = self._weight_variable([self.K, self.F])
y = tf.matmul(xl, W) # NM x F
y = tf.reshape(y, [-1, M, self.F]) # N x M x F
# Bias and non-linearity
b = self._bias_variable([1, 1, self.F])
# b = self._bias_variable([1, M, self.F])
y += b # N x M x F
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*M, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*M])
y = tf.matmul(y, W) + b
return y
class lgcnn2_2(base_model):
"""Graph CNN which uses the Lanczos approximation."""
def __init__(self, L, F, K):
super().__init__()
self.L = L # Graph Laplacian, M x M
self.F = F # Number of filters
self.K = K # Polynomial order, i.e. filter size (number of hopes)
def _inference(self, x, dropout):
with tf.name_scope('gconv1'):
N, M = x.get_shape() # N: number of samples, M: number of features
M = int(M)
# Transform to Lanczos basis
xl = tf.transpose(x) # M x N
def lanczos(x):
return graph.lanczos(self.L, x, self.K)
xl = tf.py_func(lanczos, [xl], [tf.float32])[0]
xl = tf.transpose(xl) # N x M x K
xl = tf.reshape(xl, [-1, self.K]) # NM x K
# Filter
W = self._weight_variable([self.K, self.F])
y = tf.matmul(xl, W) # NM x F
y = tf.reshape(y, [-1, M, self.F]) # N x M x F
# Bias and non-linearity
# b = self._bias_variable([1, 1, self.F])
b = self._bias_variable([1, M, self.F])
y += b # N x M x F
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*M, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*M])
y = tf.matmul(y, W) + b
return y
class cgcnn2_2(base_model):
"""Graph CNN which uses the Chebyshev approximation."""
def __init__(self, L, F, K):
super().__init__()
self.L = graph.rescale_L(L, lmax=2) # Graph Laplacian, M x M
self.F = F # Number of filters
self.K = K # Polynomial order, i.e. filter size (number of hopes)
def _inference(self, x, dropout):
with tf.name_scope('gconv1'):
N, M = x.get_shape() # N: number of samples, M: number of features
M = int(M)
# Transform to Chebyshev basis
xc = tf.transpose(x) # M x N
def chebyshev(x):
return graph.chebyshev(self.L, x, self.K)
xc = tf.py_func(chebyshev, [xc], [tf.float32])[0]
xc = tf.transpose(xc) # N x M x K
xc = tf.reshape(xc, [-1, self.K]) # NM x K
# Filter
W = self._weight_variable([self.K, self.F])
y = tf.matmul(xc, W) # NM x F
y = tf.reshape(y, [-1, M, self.F]) # N x M x F
# Bias and non-linearity
# b = self._bias_variable([1, 1, self.F])
b = self._bias_variable([1, M, self.F])
y += b # N x M x F
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*M, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*M])
y = tf.matmul(y, W) + b
return y
class cgcnn2_3(base_model):
"""Graph CNN which uses the Chebyshev approximation."""
def __init__(self, L, F, K):
super().__init__()
L = graph.rescale_L(L, lmax=2) # Graph Laplacian, M x M
self.L = L.toarray()
self.F = F # Number of filters
self.K = K # Polynomial order, i.e. filter size (number of hopes)
def _inference(self, x, dropout):
with tf.name_scope('gconv1'):
N, M = x.get_shape() # N: number of samples, M: number of features
M = int(M)
# Filter
W = self._weight_variable([self.K, self.F])
def filter(xt, k):
xt = tf.reshape(xt, [-1, 1]) # NM x 1
w = tf.slice(W, [k,0], [1,-1]) # 1 x F
y = tf.matmul(xt, w) # NM x F
return tf.reshape(y, [-1, M, self.F]) # N x M x F
xt0 = x
y = filter(xt0, 0)
if self.K > 1:
xt1 = tf.matmul(x, self.L, b_is_sparse=True) # N x M
y += filter(xt1, 1)
for k in range(2, self.K):
xt2 = 2 * tf.matmul(xt1, self.L, b_is_sparse=True) - xt0 # N x M
y += filter(xt2, k)
xt0, xt1 = xt1, xt2
# Bias and non-linearity
# b = self._bias_variable([1, 1, self.F])
b = self._bias_variable([1, M, self.F])
y += b # N x M x F
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*M, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*M])
y = tf.matmul(y, W) + b
return y
class cgcnn2_4(base_model):
"""Graph CNN which uses the Chebyshev approximation."""
def __init__(self, L, F, K):
super().__init__()
L = graph.rescale_L(L, lmax=2) # Graph Laplacian, M x M
L = L.tocoo()
data = L.data
indices = np.empty((L.nnz, 2))
indices[:,0] = L.row
indices[:,1] = L.col
L = tf.SparseTensor(indices, data, L.shape)
self.L = tf.sparse_reorder(L)
self.F = F # Number of filters
self.K = K # Polynomial order, i.e. filter size (number of hopes)
def _inference(self, x, dropout):
with tf.name_scope('gconv1'):
N, M = x.get_shape() # N: number of samples, M: number of features
M = int(M)
# Filter
W = self._weight_variable([self.K, self.F])
def filter(xt, k):
xt = tf.transpose(xt) # N x M
xt = tf.reshape(xt, [-1, 1]) # NM x 1
w = tf.slice(W, [k,0], [1,-1]) # 1 x F
y = tf.matmul(xt, w) # NM x F
return tf.reshape(y, [-1, M, self.F]) # N x M x F
xt0 = tf.transpose(x) # M x N
y = filter(xt0, 0)
if self.K > 1:
xt1 = tf.sparse_tensor_dense_matmul(self.L, xt0)
y += filter(xt1, 1)
for k in range(2, self.K):
xt2 = 2 * tf.sparse_tensor_dense_matmul(self.L, xt1) - xt0 # M x N
y += filter(xt2, k)
xt0, xt1 = xt1, xt2
# Bias and non-linearity
# b = self._bias_variable([1, 1, self.F])
b = self._bias_variable([1, M, self.F])
y += b # N x M x F
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*M, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*M])
y = tf.matmul(y, W) + b
return y
class cgcnn2_5(base_model):
"""Graph CNN which uses the Chebyshev approximation."""
def __init__(self, L, F, K):
super().__init__()
L = graph.rescale_L(L, lmax=2) # Graph Laplacian, M x M
L = L.tocoo()
data = L.data
indices = np.empty((L.nnz, 2))
indices[:,0] = L.row
indices[:,1] = L.col
L = tf.SparseTensor(indices, data, L.shape)
self.L = tf.sparse_reorder(L)
self.F = F # Number of filters
self.K = K # Polynomial order, i.e. filter size (number of hopes)
def _inference(self, x, dropout):
with tf.name_scope('gconv1'):
N, M = x.get_shape() # N: number of samples, M: number of features
M = int(M)
# Transform to Chebyshev basis
xt0 = tf.transpose(x) # M x N
xt = tf.expand_dims(xt0, 0) # 1 x M x N
def concat(xt, x):
x = tf.expand_dims(x, 0) # 1 x M x N
return tf.concat([xt, x], axis=0) # K x M x N
if self.K > 1:
xt1 = tf.sparse_tensor_dense_matmul(self.L, xt0)
xt = concat(xt, xt1)
for k in range(2, self.K):
xt2 = 2 * tf.sparse_tensor_dense_matmul(self.L, xt1) - xt0 # M x N
xt = concat(xt, xt2)
xt0, xt1 = xt1, xt2
xt = tf.transpose(xt) # N x M x K
xt = tf.reshape(xt, [-1,self.K]) # NM x K
# Filter
W = self._weight_variable([self.K, self.F])
y = tf.matmul(xt, W) # NM x F
y = tf.reshape(y, [-1, M, self.F]) # N x M x F
# Bias and non-linearity
# b = self._bias_variable([1, 1, self.F])
b = self._bias_variable([1, M, self.F])
y += b # N x M x F
y = tf.nn.relu(y)
with tf.name_scope('fc1'):
W = self._weight_variable([self.F*M, NCLASSES])
b = self._bias_variable([NCLASSES])
y = tf.reshape(y, [-1, self.F*M])
y = tf.matmul(y, W) + b
return y
def bspline_basis(K, x, degree=3):
"""
Return the B-spline basis.
K: number of control points.
x: evaluation points
or number of evenly distributed evaluation points.
degree: degree of the spline. Cubic spline by default.
"""
if np.isscalar(x):
x = np.linspace(0, 1, x)
# Evenly distributed knot vectors.
kv1 = x.min() * np.ones(degree)
kv2 = np.linspace(x.min(), x.max(), K-degree+1)
kv3 = x.max() * np.ones(degree)
kv = np.concatenate((kv1, kv2, kv3))
# Cox - DeBoor recursive function to compute one spline over x.
def cox_deboor(k, d):
# Test for end conditions, the rectangular degree zero spline.
if (d == 0):
return ((x - kv[k] >= 0) & (x - kv[k + 1] < 0)).astype(int)
denom1 = kv[k + d] - kv[k]
term1 = 0
if denom1 > 0:
term1 = ((x - kv[k]) / denom1) * cox_deboor(k, d - 1)
denom2 = kv[k + d + 1] - kv[k + 1]
term2 = 0
if denom2 > 0:
term2 = ((-(x - kv[k + d + 1]) / denom2) * cox_deboor(k + 1, d - 1))
return term1 + term2
# Compute basis for each point
basis = np.column_stack([cox_deboor(k, degree) for k in range(K)])
basis[-1,-1] = 1
return basis
class cgcnn(base_model):
"""
Graph CNN which uses the Chebyshev approximation.
The following are hyper-parameters of graph convolutional layers.
They are lists, which length is equal to the number of gconv layers.
F: Number of features.
K: List of polynomial orders, i.e. filter sizes or number of hopes.
p: Pooling size.
Should be 1 (no pooling) or a power of 2 (reduction by 2 at each coarser level).
Beware to have coarsened enough.
L: List of Graph Laplacians. Size M x M. One per coarsening level.
The following are hyper-parameters of fully connected layers.
They are lists, which length is equal to the number of fc layers.
M: Number of features per sample, i.e. number of hidden neurons.
The last layer is the softmax, i.e. M[-1] is the number of classes.
The following are choices of implementation for various blocks.
filter: filtering operation, e.g. chebyshev5, lanczos2 etc.
brelu: bias and relu, e.g. b1relu or b2relu.
pool: pooling, e.g. mpool1.
Training parameters:
num_epochs: Number of training epochs.
learning_rate: Initial learning rate.
decay_rate: Base of exponential decay. No decay with 1.
decay_steps: Number of steps after which the learning rate decays.
momentum: Momentum. 0 indicates no momentum.
Regularization parameters:
regularization: L2 regularizations of weights and biases.
dropout: Dropout (fc layers): probability to keep hidden neurons. No dropout with 1.
batch_size: Batch size. Must divide evenly into the dataset sizes.
eval_frequency: Number of steps between evaluations.
Directories:
dir_name: Name for directories (summaries and model parameters).
"""
def __init__(self, L, F, K, p, M, filter='chebyshev5', brelu='b1relu', pool='mpool1',
num_epochs=20, learning_rate=0.1, decay_rate=0.95, decay_steps=None, momentum=0.9,
regularization=0, dropout=0, batch_size=100, eval_frequency=200,
dir_name=''):
super().__init__()
# Verify the consistency w.r.t. the number of layers.
assert len(L) >= len(F) == len(K) == len(p)
assert np.all(np.array(p) >= 1)
p_log2 = np.where(np.array(p) > 1, np.log2(p), 0)
assert np.all(np.mod(p_log2, 1) == 0) # Powers of 2.
assert len(L) >= 1 + np.sum(p_log2) # Enough coarsening levels for pool sizes.
# Keep the useful Laplacians only. May be zero.
M_0 = L[0].shape[0]
j = 0
self.L = []
for pp in p:
self.L.append(L[j])
j += int(np.log2(pp)) if pp > 1 else 0
L = self.L
# Print information about NN architecture.
Ngconv = len(p)
Nfc = len(M)
print('NN architecture')
print(' input: M_0 = {}'.format(M_0))
for i in range(Ngconv):
print(' layer {0}: cgconv{0}'.format(i+1))
print(' representation: M_{0} * F_{1} / p_{1} = {2} * {3} / {4} = {5}'.format(
i, i+1, L[i].shape[0], F[i], p[i], L[i].shape[0]*F[i]//p[i]))
F_last = F[i-1] if i > 0 else 1
print(' weights: F_{0} * F_{1} * K_{1} = {2} * {3} * {4} = {5}'.format(
i, i+1, F_last, F[i], K[i], F_last*F[i]*K[i]))
if brelu == 'b1relu':
print(' biases: F_{} = {}'.format(i+1, F[i]))
elif brelu == 'b2relu':
print(' biases: M_{0} * F_{0} = {1} * {2} = {3}'.format(
i+1, L[i].shape[0], F[i], L[i].shape[0]*F[i]))
for i in range(Nfc):
name = 'logits (softmax)' if i == Nfc-1 else 'fc{}'.format(i+1)
print(' layer {}: {}'.format(Ngconv+i+1, name))
print(' representation: M_{} = {}'.format(Ngconv+i+1, M[i]))
M_last = M[i-1] if i > 0 else M_0 if Ngconv == 0 else L[-1].shape[0] * F[-1] // p[-1]
print(' weights: M_{} * M_{} = {} * {} = {}'.format(
Ngconv+i, Ngconv+i+1, M_last, M[i], M_last*M[i]))
print(' biases: M_{} = {}'.format(Ngconv+i+1, M[i]))
# Store attributes and bind operations.
self.L, self.F, self.K, self.p, self.M = L, F, K, p, M
self.num_epochs, self.learning_rate = num_epochs, learning_rate
self.decay_rate, self.decay_steps, self.momentum = decay_rate, decay_steps, momentum
self.regularization, self.dropout = regularization, dropout
self.batch_size, self.eval_frequency = batch_size, eval_frequency
self.dir_name = dir_name
self.filter = getattr(self, filter)
self.brelu = getattr(self, brelu)
self.pool = getattr(self, pool)
# Build the computational graph.
self.build_graph(M_0)
def filter_in_fourier(self, x, L, Fout, K, U, W):
# TODO: N x F x M would avoid the permutations
N, M, Fin = x.get_shape()
N, M, Fin = int(N), int(M), int(Fin)
x = tf.transpose(x, perm=[1, 2, 0]) # M x Fin x N
# Transform to Fourier domain
x = tf.reshape(x, [M, Fin*N]) # M x Fin*N
x = tf.matmul(U, x) # M x Fin*N
x = tf.reshape(x, [M, Fin, N]) # M x Fin x N
# Filter
x = tf.matmul(W, x) # for each feature
x = tf.transpose(x) # N x Fout x M
x = tf.reshape(x, [N*Fout, M]) # N*Fout x M
# Transform back to graph domain
x = tf.matmul(x, U) # N*Fout x M
x = tf.reshape(x, [N, Fout, M]) # N x Fout x M
return tf.transpose(x, perm=[0, 2, 1]) # N x M x Fout
def fourier(self, x, L, Fout, K):
assert K == L.shape[0] # artificial but useful to compute number of parameters
N, M, Fin = x.get_shape()
N, M, Fin = int(N), int(M), int(Fin)
# Fourier basis
_, U = graph.fourier(L)
U = tf.constant(U.T, dtype=tf.float32)
# Weights
W = self._weight_variable([M, Fout, Fin], regularization=False)
return self.filter_in_fourier(x, L, Fout, K, U, W)
def spline(self, x, L, Fout, K):
N, M, Fin = x.get_shape()
N, M, Fin = int(N), int(M), int(Fin)
# Fourier basis
lamb, U = graph.fourier(L)
U = tf.constant(U.T, dtype=tf.float32) # M x M
# Spline basis
B = bspline_basis(K, lamb, degree=3) # M x K
#B = bspline_basis(K, len(lamb), degree=3) # M x K
B = tf.constant(B, dtype=tf.float32)
# Weights
W = self._weight_variable([K, Fout*Fin], regularization=False)
W = tf.matmul(B, W) # M x Fout*Fin
W = tf.reshape(W, [M, Fout, Fin])
return self.filter_in_fourier(x, L, Fout, K, U, W)
def chebyshev2(self, x, L, Fout, K):
"""
Filtering with Chebyshev interpolation
Implementation: numpy.
Data: x of size N x M x F
N: number of signals
M: number of vertices
F: number of features per signal per vertex
"""
N, M, Fin = x.get_shape()
N, M, Fin = int(N), int(M), int(Fin)
# Rescale Laplacian. Copy to not modify the shared L.
L = scipy.sparse.csr_matrix(L)
L = graph.rescale_L(L, lmax=2)
# Transform to Chebyshev basis
x = tf.transpose(x, perm=[1, 2, 0]) # M x Fin x N
x = tf.reshape(x, [M, Fin*N]) # M x Fin*N
def chebyshev(x):
return graph.chebyshev(L, x, K)
x = tf.py_func(chebyshev, [x], [tf.float32])[0] # K x M x Fin*N
x = tf.reshape(x, [K, M, Fin, N]) # K x M x Fin x N
x = tf.transpose(x, perm=[3,1,2,0]) # N x M x Fin x K
x = tf.reshape(x, [N*M, Fin*K]) # N*M x Fin*K
# Filter: Fin*Fout filters of order K, i.e. one filterbank per feature.
W = self._weight_variable([Fin*K, Fout], regularization=False)
x = tf.matmul(x, W) # N*M x Fout
return tf.reshape(x, [N, M, Fout]) # N x M x Fout
def chebyshev5(self, x, L, Fout, K):
N, M, Fin = x.get_shape()
N, M, Fin = int(N), int(M), int(Fin)
# Rescale Laplacian and store as a TF sparse tensor. Copy to not modify the shared L.
L = scipy.sparse.csr_matrix(L)
L = graph.rescale_L(L, lmax=2)
L = L.tocoo()
indices = np.column_stack((L.row, L.col))
L = tf.SparseTensor(indices, L.data, L.shape)
L = tf.sparse_reorder(L)
# Transform to Chebyshev basis
x0 = tf.transpose(x, perm=[1, 2, 0]) # M x Fin x N
x0 = tf.reshape(x0, [M, Fin*N]) # M x Fin*N
x = tf.expand_dims(x0, 0) # 1 x M x Fin*N
def concat(x, x_):
x_ = tf.expand_dims(x_, 0) # 1 x M x Fin*N
return tf.concat([x, x_], axis=0) # K x M x Fin*N
if K > 1:
x1 = tf.sparse_tensor_dense_matmul(L, x0)
x = concat(x, x1)
for k in range(2, K):
x2 = 2 * tf.sparse_tensor_dense_matmul(L, x1) - x0 # M x Fin*N
x = concat(x, x2)
x0, x1 = x1, x2
x = tf.reshape(x, [K, M, Fin, N]) # K x M x Fin x N
x = tf.transpose(x, perm=[3,1,2,0]) # N x M x Fin x K
x = tf.reshape(x, [N*M, Fin*K]) # N*M x Fin*K
# Filter: Fin*Fout filters of order K, i.e. one filterbank per feature pair.
W = self._weight_variable([Fin*K, Fout], regularization=False)
x = tf.matmul(x, W) # N*M x Fout
return tf.reshape(x, [N, M, Fout]) # N x M x Fout
def b1relu(self, x):
"""Bias and ReLU. One bias per filter."""
N, M, F = x.get_shape()
b = self._bias_variable([1, 1, int(F)], regularization=False)
return tf.nn.relu(x + b)
def b2relu(self, x):
"""Bias and ReLU. One bias per vertex per filter."""
N, M, F = x.get_shape()
b = self._bias_variable([1, int(M), int(F)], regularization=False)
return tf.nn.relu(x + b)
def mpool1(self, x, p):
"""Max pooling of size p. Should be a power of 2."""
if p > 1:
x = tf.expand_dims(x, 3) # N x M x F x 1
x = tf.nn.max_pool(x, ksize=[1,p,1,1], strides=[1,p,1,1], padding='SAME')
#tf.maximum
return tf.squeeze(x, [3]) # N x M/p x F
else:
return x
def apool1(self, x, p):
"""Average pooling of size p. Should be a power of 2."""
if p > 1:
x = tf.expand_dims(x, 3) # N x M x F x 1
x = tf.nn.avg_pool(x, ksize=[1,p,1,1], strides=[1,p,1,1], padding='SAME')
return tf.squeeze(x, [3]) # N x M/p x F
else:
return x
def fc(self, x, Mout, relu=True):
"""Fully connected layer with Mout features."""
N, Min = x.get_shape()
W = self._weight_variable([int(Min), Mout], regularization=True)
b = self._bias_variable([Mout], regularization=True)
x = tf.matmul(x, W) + b
return tf.nn.relu(x) if relu else x
def _inference(self, x, dropout):
# Graph convolutional layers.
x = tf.expand_dims(x, 2) # N x M x F=1
for i in range(len(self.p)):
with tf.variable_scope('conv{}'.format(i+1)):
with tf.name_scope('filter'):
x = self.filter(x, self.L[i], self.F[i], self.K[i])
with tf.name_scope('bias_relu'):
x = self.brelu(x)
with tf.name_scope('pooling'):
x = self.pool(x, self.p[i])
# Fully connected hidden layers.
N, M, F = x.get_shape()
x = tf.reshape(x, [int(N), int(M*F)]) # N x M
for i,M in enumerate(self.M[:-1]):
with tf.variable_scope('fc{}'.format(i+1)):
x = self.fc(x, M)
x = tf.nn.dropout(x, dropout)
# Logits linear layer, i.e. softmax without normalization.
with tf.variable_scope('logits'):
x = self.fc(x, self.M[-1], relu=False)
return x