-
Notifications
You must be signed in to change notification settings - Fork 79
/
eval_models.sh
executable file
·100 lines (85 loc) · 1.78 KB
/
eval_models.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/bin/bash
export outf=2021_11_26_test
mkdir -p ${outf}
datasets=(
wilddash-19
camvid-11
scannet-20
kitti-19
pascal-context-60
voc2012
ade20k-150
bdd
cityscapes-19
coco-panoptic-133
idd-39
mapillary-public65
sunrgbd-37
)
training_datasets=(
ade20k-150
bdd
cityscapes-19
coco-panoptic-133
idd-39
mapillary-public65
sunrgbd-37
)
base_sizes=(
360
720
1080
#480
#2160
)
model_names=(
ade20k-150-1m
bdd-1m
cityscapes-19-1m
coco-panoptic-133-1m
idd-39-1m
mseg-3m-480p
mapillary-65-1m
mseg-3m-720p
mseg-1m
mseg-mgda-1m
mseg-3m
sunrgbd-37-1m
mseg-unrelabeled-1m
)
relabeled_model_names=(
mseg-3m
mseg-3m-480p
mseg-3m-720p
mseg-1m
)
for base_size in ${base_sizes[@]}; do
for dataset in ${datasets[@]}; do
for model_name in ${model_names[@]}; do
d_folder=$dataset
# check if eval dataset is one of the training datasets
if [[ " ${training_datasets[@]} " =~ " ${dataset} " ]]; then
d_folder=${d_folder}_universal
# check if eval model is one of the relabeled models
if [[ " ${relabeled_model_names[@]} " =~ " ${model_name} " ]]; then
d_folder=${d_folder}_relabeled
fi
fi
# Mapillary has larger resolution images, and requires more GPU memory
if [[ $dataset == *"mapillary"* ]]
then
script_name="eval_universal_tax_model_overcap_3gpu.sh"
else
script_name="eval_universal_tax_model_overcap_1gpu.sh"
fi
echo " "
echo "Evaluate on: ${d_folder}"
echo $script_name
#sbatch --dependency=singleton --job-name=mseg_eval_A -c 5 -p short -x jarvis,vicki,cortana,gideon,ephemeral-3 --gres=gpu:1 \
sbatch -c 5 --job-name=mseg_eval_overcap_A \
-o ${outf}/${model_name}_${base_size}_${dataset}.log \
${script_name} ${base_size} ${model_name} ${dataset} ${d_folder}
echo " "
done
done
done