## Running the code #### Train ``` python sae/sae_gzsl.py -data AWA2/AWA1/CUB/SUN/APY -mode train -ld1 [LOWER BOUND OF VARIATION] -ld2 [UPPER BOUND OF VARIATION] ``` For testing, set mode to test and set ld1 (F->S) and ld2 (S->F) to the best values from the tables below. ## Results The numbers below are **class-averaged top-1 accuracies** (see ZSLGBU paper for details). #### Classical ZSL | Dataset | ZSLGBU Results || Repository Results ||| |---------|:--------------:|:--------:|:------:|:----------:|:-------:| | | | F->S (W) | Lambda | S->F (W.T) | Lambda | | CUB | 33.3 | 39.48 | 100 | **46.70** | 0.2 | | AWA1 | 53.0 | 51.34 | 3.0 | **59.89** | 0.8 | | AWA2 | 54.1 | 51.66 | 0.6 | **60.51** | 0.2 | | aPY | 8.3 | 16.07 | 2.0 | **16.50** | 4.0 | | SUN | 40.3 | 52.85 | 0.32 | **59.86** | 0.16 | #### Generalized ZSL |Dataset ||ZSLGBU Results |||||Repository Results ||||| |--------|:-----:|:-----:|:-----:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | | | ||F->S (W) || Lambda ||S->F (W.T) || Lambda | | | U | S | H | U | S | H | | U | S | H | | | CUB | 7.8 | 54.0 | 13.6 | 13.86 | 49.88 | 21.69 | 80 | **15.72** | **57.02** | **24.64** | 0.2 | | AWA1 | 1.8 | 77.1 | 3.5 | 5.29 | 80.52 | 9.92 | 3.2 | **14.72** | **82.93** | **25.0** | 0.8 | | AWA2 | 1.1 | 82.2 | 2.2 | 5.0 | 81.42 | 9.42 | 0.8 | **12.86** | **87.20** | **22.41** | 0.2 | | aPY | 0.4 | **80.9** | 0.9 | 8.28 | 27.97 | 12.77 | 0.16 | **9.48** | 56.62 | **16.24** | 2.56 | | SUN | 8.8 | 18.0 | 11.8 | 16.81 | 24.69 | 20.0 | 0.32 | **19.03** | **31.20** | **23.64** | 0.08 | U -> Unseen Classes; S -> Seen Classes; H-> Harmonic Mean of the 2. ### References [1] [Original MATLAB Code by Authors](https://github.com/Elyorcv/SAE) [2] https://github.com/hoseong-kim/sae-pytorch