''' Created on August 28, 2017 @author: optas ''' import os.path as osp import tensorflow as tf MODEL_SAVER_ID = 'models.ckpt' class Neural_Net(object): def __init__(self, name, graph): if graph is None: graph = tf.get_default_graph() self.graph = graph self.name = name with tf.variable_scope(name): with tf.device('/cpu:0'): self.epoch = tf.get_variable('epoch', [], initializer=tf.constant_initializer(0), trainable=False) self.increment_epoch = self.epoch.assign_add(tf.constant(1.0)) self.no_op = tf.no_op() def is_training(self): is_training_op = self.graph.get_collection('is_training') return self.sess.run(is_training_op)[0] def restore_model(self, model_path, epoch, verbose=False): '''Restore all the variables of a saved model. ''' self.saver.restore(self.sess, osp.join(model_path, MODEL_SAVER_ID + '-' + str(int(epoch)))) if self.epoch.eval(session=self.sess) != epoch: warnings.warn('Loaded model\'s epoch doesn\'t match the requested one.') else: if verbose: print('Model restored in epoch {0}.'.format(epoch))