Skip to content

rasbt/stat479-deep-learning-ss19

Folders and files

NameName
Last commit message
Last commit date

Latest commit

May 26, 2019
c8bf651 · May 26, 2019
Jan 23, 2019
Jan 26, 2019
May 1, 2019
Feb 9, 2019
Mar 11, 2019
Feb 28, 2019
Apr 30, 2019
Feb 27, 2019
Mar 7, 2019
Mar 11, 2019
Mar 27, 2019
May 1, 2019
Apr 11, 2019
Apr 28, 2019
Apr 19, 2019
May 5, 2019
May 3, 2019
Feb 4, 2019
Feb 15, 2019
Feb 28, 2019
Apr 6, 2019
Feb 27, 2019
Jan 19, 2019
Jan 19, 2019
May 26, 2019

Repository files navigation

STAT479: Deep Learning (Spring 2019)

Instructor: Sebastian Raschka

Lecture material for the STAT 479 Deep Learning course at University Wisconsin-Madison. For details, please see the course website at http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Course Calendar

Please see http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/#calendar.

Topic Outline

  • History of neural networks and what makes deep learning different from “classic machine learning”
  • Introduction to the concept of neural networks by connecting it to familiar concepts such as logistic regression and multinomial logistic regression (which can be seen as special cases: single-layer neural nets)
  • Modeling and deriving non-convex loss function through computation graphs
  • Introduction to automatic differentiation and PyTorch for efficient data manipulation using GPUs
  • Convolutional neural networks for image analysis
  • 1D convolutions for sequence analysis
  • Sequence analysis with recurrent neural networks
  • Generative models to sample from input distributions
    • Autoencoders
    • Variational autoencoders
    • Generative Adversarial Networks

Material



Project Presentation Awards

Without exception, we had amazing project presentations this semester. Nonetheles, we have some winners the top 5 project presentations for each of the 3 categories, as determined by voting among the ~65 students:

Best Oral Presentation:

  1. Saisharan Chimbiki, Grant Dakovich, Nick Vander Heyden (Creating Tweets inspired by Deepak Chopra), average score: 8.417

  2. Josh Duchniak, Drew Huang, Jordan Vonderwell (Predicting Blog Authors’ Age and Gender), average score: 7.663

  3. Sam Berglin, Jiahui Jiang, Zheming Lian (CNNs for 3D Image Classification), average score: 7.595

  4. Christina Gregis, Wengie Wang, Yezhou Li (Music Genre Classification Based on Lyrics), average score: 7.588

  5. Ping Yu, Ke Chen, Runfeng Yong (NLP on Amazon Fine Food Reviews) average score: 7.525

Most Creative Project:

  1. Saisharan Chimbiki, Grant Dakovich, Nick Vander Heyden (Creating Tweets inspired by Deepak Chopra), average score: 8.313

  2. Yien Xu, Boyang Wei, Jiongyi Cao (Judging a Book by its Cover: A Modern Approach), average score: 7.952

  3. Xueqian Zhang, Yuhan Meng, Yuchen Zeng (Handwritten Math Symbol Recognization), average score: 7.919

  4. Jinhyung Ahn, Jiawen Chen, Lu Li (Diagnosing Plant Diseases from Images for Improving Agricultural Food Production), average score: 7.917

  5. Poet Larsen, Reng Chiz Der, Noah Haselow (Convolutional Neural Networks for Audio Recognition), average score: 7.854

Best Visualizations:

  1. Ping Yu, Ke Chen, Runfeng Yong (NLP on Amazon Fine Food Reviews), average score: 8.189

  2. Xueqian Zhang, Yuhan Meng, Yuchen Zeng (Handwritten Math Symbol Recognization), average score: 8.153

  3. Saisharan Chimbiki, Grant Dakovich, Nick Vander Heyden (Creating Tweets inspired by Deepak Chopra), average score: 7.677

  4. Poet Larsen, Reng Chiz Der, Noah Haselow (Convolutional Neural Networks for Audio Recognition), average score: 7.656

  5. Yien Xu, Boyang Wei, Jiongyi Cao (Judging a Book by its Cover: A Modern Approach), average score: 7.490

About

Course material for STAT 479: Deep Learning (SS 2019) at University Wisconsin-Madison

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published