Skip to content

Code for Implicit Regularization in Deep Matrix Factorization.

Notifications You must be signed in to change notification settings

roosephu/deep_matrix_factorization

Repository files navigation

Implicit Regularization in Deep Matrix Factorization

Code for Implicit Regularization in Deep Matrix Factorization.

Installation

Please ues Python 3.7 for running this code.

pip install -r requirements.txt

Dataset Generation

Here is the example for generating the inputs for matrix completion with n = 100, rank = 5 and 2k samples.

mkdir -p datasets/mat-cmpl
python gen_gt.py --config configs/mat-cmpl/gen_gt.toml
python gen_obs.py --config configs/mat-cmpl/gen_obs.toml --set n_train_samples 2000

Experiments

If you just want to run one experiment, use the following command as an example.

python main.py --print_config --log_dir /tmp/exp1 \
    --config configs/mat-cmpl/run.toml \
    --config configs/mat-cmpl/2000.toml \
    --config configs/opt/grouprmsprop.toml \
    --set depth 2 

For nuclear norm minimization:

python main.py --print_config --log_dir /tmp/exp2 \
    --config configs/mat-cmpl/run.toml \
    --config configs/mat-cmpl/2000.toml \
    --config configs/opt/cvx.toml

For dynamics of gradient descent (Figure 3):

python main.py --log_dir /tmp --print_config \
    --config configs/ml-100k.toml \
    --config configs/opt/SGD.toml \
    --config configs/dynamics.toml \
    --set depth 2

The results will be saved at /tmp/ID, where ID is a different number for each run and startsfrom 0.

To run multiple experiments sequentially, you can use ./scripts/run.rb (please make sure Ruby is installed and gem install colorize --user). The code will log into ~/logs by default.

./scripts/run.rb --n_jobs 3 --name mat-cmpl \
    --template 'python main.py --print_config --log_dir LOGDIR --config configs/mat-cmpl/run.toml --config configs/mat-cmpl/SAMPLES.toml --config configs/opt/grouprmsprop.toml --set depth DEPTH --set lr LR --set init_scale SCALE' \
    --replace LR=0.001,0.0003 \
    --replace DEPTH=2,3,4 \
    --replace SCALE=1.e-3,1.e-4,1.e-5,1.e-6 \
    --replace SAMPLES=2000,5000

For multiple experiments on nuclear norm minimization:

./scripts/run.rb --n_jobs 1 --name mat-cmpl-cvx \
    --template 'python main.py --print_config --log_dir LOGDIR --config configs/mat-cmpl/run.toml --config configs/mat-cmpl/SAMPLES.toml --config configs/opt/cvx.toml' \
    --replace SAMPLES=2000,5000

Plotting

We use the Jupyter notebook plot.ipynb to generate our figures.

Please modify 4-th cell to load all results. The directories are the corresponding --log_dir option, e.g., /tmp/exp1 in the first example.

About

Code for Implicit Regularization in Deep Matrix Factorization.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published