Skip to content

Implementation of SNAIL(A Simple Neural Attentive Meta-Learner) with Gluon

Notifications You must be signed in to change notification settings

seujung/SNAIL-gluon

Repository files navigation

SNAIL with Gluon


Gluon inplementation of A Simple Neural Attentive Meta-Learniner

network structore

net_structure

building block structure

block_structure

Requirements

  • Python 3.6.1
  • mxnet 1.3.1
  • mxboard 0.1.0
  • tqdm 4.29.0

Application

  • Omniglot

Usage

  • arguments
    • batch_size : Define batch size (defualt=64)
    • epochs : Define total epoches (default=50)
    • N : the nunber of N-way (default=10)
    • K : the number of K-shot (default=5)
    • iterations : the number of data iteration (default=1000)
    • input_dims : embedding dimension of input data (default=64)
    • download : download omniglot dataset (default=False)
    • GPU_COUNT : use gpu count (default=1)
    • logdir : location of mxboard log file (default=./log)
    • modeldir : location of model parameter file (default=./models)
default setting
python main.py

or

manual setting
python main.py --batch_size=24 --epochs=200 ..

Results

10-way 5-shot case

perf_acc

Reference

About

Implementation of SNAIL(A Simple Neural Attentive Meta-Learner) with Gluon

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages