Skip to content

Embeddings from sentence-transformers in Android! Supports all-MiniLM-L6-V2, bge-small-en, snowflake-arctic models and more

License

Notifications You must be signed in to change notification settings

shubham0204/Sentence-Embeddings-Android

Repository files navigation

Sentence Embeddings in Android

An Android library that provides a port to sentence-transformers, which are used to generate sentence embeddings (fixed-size vectors for text/sentences)

App Demo

Updates

  • 2024-08: Along with token_ids and attention_mask, the native library now also returns token_type_ids to support additional models like the bge-small-en-v1.5 (issue #3)

Supported Models

To add more models, refer the Adding New Models section.

Setup

1. Add the Jitpack repository to settings.gradle.kts

The library is hosted with Jitpack. Add the jitpack.io repository in settings.gradle.kts for Gradle to search Jitpack packages,

dependencyResolutionManagement {
    repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
    repositories {
        google()
        mavenCentral()
        maven{ url = uri("https://jitpack.io") }
    }
}

or with Groovy build scripts,

dependencyResolutionManagement {
    repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
    repositories {
        google()
        mavenCentral()
        maven { url "https://jitpack.io" }
    }
}

2. Add the dependency to build.gradle.kts

Add the Sentence-Embeddings-Android dependency to build.gradle.kts,

dependencies {
    // ...
    implementation("com.github.shubham0204:Sentence-Embeddings-Android:0.0.5")
    // ...
}

Sync the Gradle scripts and rebuild the project.

Usage

API

The library provides a SentenceEmbedding class with init and encode suspend functions that initialize the model and generate the sentence embedding respectively.

The init function takes two mandatory arguments, modelBytes and tokenizerBytes.

import com.ml.shubham0204.sentence_embeddings.SentenceEmbedding

val sentenceEmbedding = SentenceEmbedding()

// Download the model and store it in the app's internal storage
// (OR) copy the model from the assets folder (see the app module in the repo)
val modelFile = File(filesDir, "model.onnx")
val tokenizerFile = File(filesDir, "tokenizer.json")
val tokenizerBytes = tokenizerFile.readBytes()

CoroutineScope(Dispatchers.IO).launch {
    sentenceEmbedding.init(
        modelFilepath = modelFile.absolutePath,
        tokenizerBytes = tokenizerBytes,
        useTokenTypeIds = false,
        outputTensorName = "sentence_embedding",
        useFP16 = false,
        useXNNPack = false
    )
}

Once the init functions completes its execution, we can call the encode function to transform the given sentence to an embedding,

CoroutineScope(Dispatchers.IO).launch {
    val embedding: FloatArray = sentenceEmbedding.encode( "Delhi has a population 32 million" )
    println( "Embedding: $embedding" )
    println( "Embedding size: ${embedding.size}")
}

Compute Cosine Similarity

The embeddings are vectors whose relative similarity can be computed by measuring the cosine of the angle between the vectors, also termed as cosine similarity,

Tip

Here's an excellent blog to under cosine similarity

private fun cosineDistance(
    x1: FloatArray,
    x2: FloatArray
): Float {
    var mag1 = 0.0f
    var mag2 = 0.0f
    var product = 0.0f
    for (i in x1.indices) {
        mag1 += x1[i].pow(2)
        mag2 += x2[i].pow(2)
        product += x1[i] * x2[i]
    }
    mag1 = sqrt(mag1)
    mag2 = sqrt(mag2)
    return product / (mag1 * mag2)
}

CoroutineScope(Dispatchers.IO).launch {
    val e1: FloatArray = sentenceEmbedding.encode( "Delhi has a population 32 million" )
    val e2: FloatArray = sentenceEmbedding.encode( "What is the population of Delhi?" )
    val e3: FloatArray = sentenceEmbedding.encode( "Cities with a population greater than 4 million are termed as metro cities" )
    
    val d12 = cosineDistance( e1 , e2 )
    val d13 = cosineDistance( e1 , e3 )
    println( "Similarity between e1 and e2: $d12" )
    println( "Similarity between e1 and e3: $d13" )
}

Adding New Models

We demonstrate how the snowflake-arctic-embed-s model can be added to the sample application present in the app module.

  1. Download the model.onnx and tokenizer.json files from the HF snowflake-arctic-embed-s repository.

  2. Create a new sub-directory in app/src/main/assets named snowflake-arctic-embed-s, the copy the two files to the sub-directory.

  3. In Config.kt, add a new entry in the Models enum and a new branch in getModelConfig corresponding to the new model entry added in the enum,

enum class Model {
    ALL_MINILM_L6_V2,
    BGE_SMALL_EN_V1_5,
    SNOWFLAKE_ARCTIC_EMBED_S // Add the new entry
}

fun getModelConfig(model: Model): ModelConfig {
    return when (model) {
        Model.ALL_MINILM_L6_V2 -> ModelConfig(
            modelName = "all-minilm-l6-v2",
            modelAssetsFilepath = "all-minilm-l6-v2/model.onnx",
            tokenizerAssetsFilepath = "all-minilm-l6-v2/tokenizer.json",
            useTokenTypeIds = false,
            outputTensorName = "sentence_embedding"
        )
        Model.BGE_SMALL_EN_V1_5 -> ModelConfig(
            modelName = "bge-small-en-v1.5",
            modelAssetsFilepath = "bge-small-en-v1_5/model.onnx",
            tokenizerAssetsFilepath = "bge-small-en-v1_5/tokenizer.json",
            useTokenTypeIds = true,
            outputTensorName = "last_hidden_state"
        )
        // Add a new branch for the model
        Model.SNOWFLAKE_ARCTIC_EMBED_S -> ModelConfig(
            modelName = "snowflake-arctic-embed-s",
            modelAssetsFilepath = "snowflake-arctic-embed-s/model.onnx",
            tokenizerAssetsFilepath = "snowflake-arctic-embed-s/tokenizer.json",
            useTokenTypeIds = true,
            outputTensorName = "last_hidden_state"
        )
    }
}
  1. To determine the values for useTokenTypeIds and outputTensorName, open the model with Netron or load the model in Python with onnxruntime. We need to check the names of the input and output tensors.

With Netron, check if token_type_ids is the name of an input tensor. Accordingly, set the value of useTokenTypeIds while creating an instance of ModelConfig. For outputTensorName, choose the name of the output tensor which provides the embedding. For the snowflake-arctic-embed-s model, the name of that output tensor is last_hidden_state.

Model input/output tensor names in Netron

The same information can be printed to the console with following Python snippet using the onnxruntime package,

import onnxruntime as ort

session = ort.InferenceSession("model.onnx" )

print("Inputs: ")
print( [ t.shape for t in session.get_inputs() ] )
print( [ t.type for t in session.get_inputs() ] )
print( [ t.name for t in session.get_inputs() ] )

print("Outputs: ")
print( [ t.shape for t in session.get_outputs() ] )
print( [ t.type for t in session.get_outputs() ] )
print( [ t.name for t in session.get_outputs() ] )
  1. Run the app on the test-device