- 1.1. What is Deep Learning?
- 1.2. Biological and Artifical Neurons
- 1.3. ANN and its Layers
- 1.4. Exploring Activation Functions
- 1.5. Forward Propagation in ANN
- 1.6. How does ANN learn?
- 1.6.1. Backward Propagation
- 1.6.2. Gradient Descent
- 1.7. Debugging Gradient Descent with Gradient Checking
- 1.7.1 Implementing Gradient Checking
- 1.8. Putting it all together
- 1.9. Building Neural Network from Scratch
Files
01. Introduction to Deep Learning
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||